REJ10J1026-0200 Everywhere you imagine. g IE NESANAS

M3T-MR308/4 V.4.00

Reference Manual

Real-time OS for M16C/70,80,M32C/80 Series

RenesasTechnology
Rev.2.00 WWW.renesas.com

Nov 1, 2005

Active X, Microsoft, MS-DOS, Visual Basic, Visual C++, Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United
States and other countries.

IBM and AT are registered trademarks of International Business Machines Corporation.

Intel and Pentium are registered trademarks of Intel Corporation.

Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated.

TRON is an abbreviation of "The Real-time Operating system Nucleus."

ITRON is an abbreviation of "Industrial TRON."

uITRON is an abbreviation of "Micro Industrial TRON."

TRON, ITRON, and nITRON do not refer to any specific product or products.

All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Keep safety first in your circuit designs!
® Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials

® These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited
to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation, Renesas Solutions Corporation or a third party.

® Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of
any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application
examples contained in these materials.

® All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and
Renesas Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that
customers contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product
distributor for the latest product information before purchasing a product listed herein. The information described here may contain
technical inaccuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no
responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information
published by Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home
page (http://www.renesas.com).

® When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and
algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the
information and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any
damage, liability or other loss resulting from the information contained herein.

® Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under
circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions
Corporation or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

® The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or
reproduce in whole or in part these materials.

® |f these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport
contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

® Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the
products contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email
to your local distributor.
\SUPPORT\Product-name\SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

Preface

M3T-MR308 (hereafter abbreviated MR308) is the realtime operating system' for the M16C/70, 80 and
M32C/80 series of Renesas microcomputers. MR308 is compliant with uITRON Specification. *

This manual describes how to create a program that uses MR308 and the precautions to be observed when
creating a program. For details on how to use each service call of MR308, refer to the “MR308 Reference
Manual.”

Things to be prepared before MR308 can be used

Before a program can be created that uses MR308, the following products available from Renesas need to
be purchased separately.

® (C-compiler package M3T-NC308WA(abbreviated as NC308) for M16C/70,80 M32C/80 series
microcomputers

Document List

The following sets of documents are supplied with the MR308.

® Release Note

Presents a software overview and describes the corrections to the Users Manual and Reference
Manual.

® Users Manual (PDF file)

Describes the procedures and precautions to observe when using the MR308 for programming
purposes.

® Reference Manual (PDF file)

Describes the MR308 service call procedures and typical usage examples. Before reading the
Users Manual, be sure to read the Release Note.
Please read the release note before reading this manual.

Right of Software Use

The right of software use conforms to the software license agreement. You can use the MR308 for your
product development purposes only, and are not allowed to use it for the other purposes. You should also
note that this manual does not guarantee or permit the exercise of the right of software use.

1 Hereinafter abbreviated "real-time OS"

2 The pITRON Specification is originated by Dr.Ken Sakamura and his laboratory members at the Faculty Science of University
of Tokyo. Therefore,Dr.Ken Sakamura holds the copyright on the pITRON Specification. By his consent,the MR308 is produced in
compliance with the pITRON Specification.

Chapter 1

Contents

Service Call Reference

1.1. Task Management Function

act_tsk
iact_tsk
can_act
ican_act
sta_tsk
ista_tsk
ext_tsk
ter_tsk
chg_pri
ichg_pri
get_pri
iget_pri
ref _tsk
iref_tsk
ref tst
iref_tst

Activate task

Activate task (handler only)

Cancel task activation request

Cancel task activation request (handler only)
Activate task with a start code

Activate task with a start code (handler only)
Terminates invoking task

Terminate task

Change task priority

Change task priority(handler only)
Reference task priority

Reference task priority(handler only)
Reference task status

Reference task status (handler only)
Reference task status (simplified version)
Reference task status (simplified version, handler only)

1.2. Task Dependent Synchronization Function

slp_tsk
tslp_tsk
wup_tsk
iwup_tsk
can_wup
ican_wup
rel_wai
irel_wai
sus_tsk
isus_tsk
rsm_tsk
irsm_tsk
frsm_tsk
ifrsm_tsk
dly_tsk

Put task to sleep

Put task to sleep (with timeout)

Wakeup task

Wakeup task (handler only)

Cancel wakeup request

Cancel wakeup request (handler only)
Release task from waiting

Release task from waiting (handler only)
Suspend task

Suspend task (handler only)

Resume suspended task

Resume suspended task(handler only)
Forcibly resume suspended task
Forcibly resume suspended task(handler only)
Delay task

1.3. Synchronization & Communication Function (Semaphore)

sig_sem
isig_sem
wai_sem
pol_sem
ipol_sem
twai_sem
ref_sem
iref_sem

Release semaphore resource

Release semaphore resource (handler only)
Acquire semaphore resource

Acquire semaphore resource (polling)

Acquire semaphore resource (polling, handler only)
Acquire semaphore resource(with timeout)
Reference semaphore status

Reference semaphore status (handler only)

1.4. Synchronization & Communication Function (Eventflag)

set_flg
iset_flg
clr_flg
iclr_flg
wai_flg
pol_flg
ipol_flg
twai_flg
ref_flg
iref_flg

Set eventflag

Set eventflag (handler only)

Clear eventflag

Clear eventflag (handler only)

Wait for eventflag

Wait for eventflag(polling)

Wait for eventflag(polling, handler only)
Wait for eventflag(with timeout)
Reference eventflag status

Reference eventflag status (handler only)

1.5. Synchronization & Communication Function (Data Queue)

snd_dtq
psnd_dtq

Send to data queue
Send to data queue (polling)

ipsnd_dtg Send to data queue (polling, handler only)

1

-1 -
-2-
-2-
2.
-4-
-4-
-6-
-6-
-8-
-10 -
-12-
-12-
-14 -
-14 -
-16 -
-16 -
-19-
-19-
-22.-
-22.
-22.
-25-
-25-
-27-
-27 -
-29-
-29-
-31-
-31-
-33-
-33-
-33-
-33-
-35-
-37-
-37-
-37-
-39-
-39-
-39-
-39-
-42 -
-42 -
-44 -
-44 -
-44 -
- 46 -
- 46 -
-48 -
-48 -
-48 -
-48 -
-51-
-51 -
-53 -
-53-
-53-
-53-

tsnd_dtq Send to data queue (with timeout)
fsnd_dtq Forced send to data queue
ifsnd_dtqg Forced send to data queue (handler only)
rcv_dtq Receive from data queue
prcv_dtq Receive from data queue (polling)
iprcv_dtq Receive from data queue (polling, handler only)
trcv_dtq Receive from data queue (with timeout)
ref_dtq Reference data queue status
iref_dtq Reference data queue status (handler only)
1.6. Synchronization & Communication Function (Mailbox)
snd_mbx Send to mailbox
isnd_mbx Send to mailbox (handler only)
rcv_mbx Receive from mailbox
prcv_mbx Receive from mailbox (polling)
iprcv_mbx Receive from mailbox (polling, handler only)
trcv_mbx Receive from mailbox (with timeout)
ref_mbx Reference mailbox status
iref_ mbx Reference mailbox status (handler only)
1.7. Memory Pool Management Function (Fixed-size Memory Pool)
get_mpf Aquire fixed-size memory block
pget_mpf Aquire fixed-size memory block (polling)
ipget_mpf Aquire fixed-size memory block (polling, handler only)
tget_ mpf Aquire fixed-size memory block (with timeout)
rel_mpf Release fixed-size memory block
irel_mpf Release fixed-size memory block (handler only)
ref_mpf Reference fixed-size memory pool status
iref_ mpf Reference fixed-size memory pool status (handler only)
1.8. Memory Pool Management Function (Variable-size Memory Pool)
pget_mpl Aquire variable-size memory block (polling)
rel_mpl Release variable-size memory block
ref_mpl Reference variable-size memory pool status
iref_ mpl Reference variable-size memory pool status (handler only)
1.9. Time Management Function
set_tim Set system time
iset_tim Set system time (handler only)
get_tim Reference system time
iget_tim Reference system time (handler only)
isig_tim Supply a time tick
1.10. Time Management Function (Cyclic Handler)
sta_cyc Start cyclic handler operation
ista_cyc Start cyclic handler operation (handler only)
stp_cyc Stops cyclic handler operation
istp_cyc Stops cyclic handler operation (handler only)
ref_cyc Reference cyclic handler status
iref_ cyc Reference cyclic handler status (handler only)
1.11. Time Management Function (Alarm Handler)
sta_alm Start alarm handler operation
ista_alm Start alarm handler operation (handler only)
stp_alm Stop alarm handler operation
istp_alm Stop alarm handler operation (handler only)
ref_alm Reference alarm handler status
iref_alm Reference alarm handler status (handler only)
1.12. System Status Management Function
rot_rdq Rotate task precedence
irot_rdq Rotate task precedence (handler only)
get_tid Reference task ID in the RUNNING state
iget_tid Reference task ID in the RUNNING state (handler only)
loc_cpu Lock the CPU
iloc_cpu Lock the CPU (handler only)
unl_cpu Unlock the CPU
iunl_cpu Unlock the CPU (handler only)
dis_dsp Disable dispatching
ena_dsp Enables dispatching

1i

-53-
-53-
-53-
-56 -
-56 -
-56 -
-56 -
-59-
-59-
-61-
-61-
-61 -
-63-
-63-
-63-
-63 -
-66 -
- 66 -
-68 -
- 68 -
-68 -
-68 -
-68 -
-71-
-71-
-73-
-73-
-75 -
-75-
-77 -
-79-
-79-
-81-
-81-
-81-
-83-
-83-
-85-
-86 -
- 86 -
-86 -
-88-
-88-
-89-
-89-
-91-
-91-
-91-
-93-
-93-
-94 -
-94 -
-96 -
-96 -
- 96 -
-98-
-98-
-99-
-99-

-101 -

-101 -

-102 -

-104 -

sns_ctx Reference context -105 -

sns_loc Reference CPU state -106 -
sns_dsp Reference dispatching state -107 -
sns_dpn Reference dispatching pending state -108 -
1.13. Interrupt Management Function -109 -
ret_int Returns from an interrupt handler (when written in assembly language) - 109 -
1.14. System Configuration Management Function -110 -
ref _ver Reference version information -110 -
iref_ver Reference version information (handler only) -110 -
1.15. Extended Function (Short Data Queue) -112 -
vsnd_dtq Send to short data queue -112 -
vpsnd_dtq Send to short data queue (polling) -112 -
vipsnd_dtg Send to short data queue (polling, handler only) -112 -
vtsnd_dtq Send to short data queue (with timeout) -112 -
vfsnd_dtq Forced send to short data queue -112 -
vifsnd_dtq Forced send to short data queue (handler only) -112 -
vrcv_dtq Receive from short data queue -116 -
vprcev_dtq Receive from short data queue (polling) -116 -
viprcv_dtq Receive from short data queue (polling,handler only) -116 -
vircv_dtq Receive from short data queue (with timeout) -116 -
vref _dtq Reference short data queue status -119 -
viref_dtq Reference short data queue status (handler only) -119 -
1.16. Extended Function (Reset Function) -121 -
vrst dtq Clear data queue area -121 -
vrst vdtq Clear short data queue area -123 -
vrst_ mbx Clear mailbox area -125 -
vrst_mpf Clear fixed-size memory pool area -127 -
vrst_mpl Clear variable-size memory pool area -128 -
Chapter 2 Stack Size Calculation Method -131 -
2.1. Stack Size Calculation Method -132 -
2.1.1. User Stack Calculation Method -134 -
2.1.2. System Stack Calculation Method -136 -
2.2. Necessary Stack Size -140 -
Chapter 3 Appendix -143 -
3.1. List of Service Call -144 -
3.2. List of Error code -149 -
3.3. Data type -150 -
3.4. Common Constants and Packet Format of Structure -151 -

3.5. Assembly Language Interface -153 -

1ii

Chapter 1 Service Call Reference

1.1. Task Management Function
Specifications of the task management function of MR308 are listed in Table 1. Specifications of the
Task Management Function below. The task description languages in item No. 4 are those specified in
the GUI configurator. They are not output to a configuration file, nor are the MR308 kernel concerned
with them.
The task stack permits a section name to be specified for each task individually.

Iltem No. Item Content
1| TaskID 1-255
2 | Task Priority 1-255

3 Maximum number of queued

task startup requests 255

TA_HLNG: Tasks written in high-level language

4 | Task attribute TA_ASM: Tasks written in assembly language
TA_ACT: Startup attribute
5| Task stack Sections specifiable

Table 1. Specifications of the Task Management Function

act_tsk Activate task
iact_tsk Activate task (handler only)
[[C Language API]]

ER ercd act tsk(ID tskid);

ER ercd iact tsk(ID tskid);

o Parameters
ID tskid ID number of the task to be started

o Return parameters
ER ercd Terminated normally (E_OK) or error code
B Assembly language API
.include mr308.inc
act tsk TSKID
iact_tsk TSKID

o Parameters
TSKID ID number of the task to be started

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 Task ID
[[Error Code 1]
E_QOVR Queuing overflow

[[Functional description 1]

This service call starts the task indicated by tskid. The started task goes from DORMANT state to
READY state or RUNNING state.
The following lists the processing performed on startup.

1. Initializes the current priority of the task.

2. Clears the number of queued wakeup requests.

3. Clears the number of suspension requests.
Specifying tskid=TSK_SELF(0) specifies the issuing task itself. The task has passed to it as parameter
the extended information of it that was specified when the task was created. If TSK_SELF is specified
for tskid in non-task context, operation of this service call cannot be guaranteed.
If the target task is not in DORMANT state, a task activation request by this service call is enqueued.
In other words, the activation request count is incremented by 1. The maximum value of the task
activation request is 255. If this limit is exceeded, the error code E_QOVR is returned.
If TSK_SELF is specified for tskid, the issuing task itself is made the target task.
If this service call is to be issued from task context, use act_tsk; if issued from non-task context, use
iact_tsk.

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>

#include “kernel_id.h”

void taskl(VP_INT stacd)

ER ercd;

ercd = act_tsk(ID task2);
void task2(VP_INT stacd)

ext;tsk();

}

<<Example statement in assembly language>>
. INCLUDE mr308.inc
.GLB task

task:

pushm A0
act_tsk #ID TASK3

can_act Cancel task activation request
ican_act Cancel task activation request (handler only)

[[C Language API]]
ER UINT actcnt = can_act(ID tskid);
ER UINT actcnt = ican _act(ID tskid);

o Parameters
ID tskid ID number of the task to cancel

@ Return Parameters
ER_UINT actent >0 Canceled activation request count
actent <0 Error code

[[Assembly language API]]

.include mr308.inc
can_act TSKID
ican_act TSKID

® Parameters
TSKID ID number of the task to cancel

o Register contents after service call is issued

Register Content after service call is issued
name
RO Canceled startup request count or error code
AO ID number of the target task
[[Error code]
None

[[Functional description 1]

This service call finds the number of task activation requests enqueued for the task indicated by tskid,
returns the result as a return parameter, and at the same time invalidates all of the task’s activation

requests.

Specifying tskid=TSK_SELF(0) specifies the issuing task itself. If TSK_SELF is specified for tskid in

non-task context, operation of this service call cannot be guaranteed.

This service call can be invoked for a task in DORMANT state as the target task. In that case, the

return parameter is 0.

If this service call is to be issued from task context, use can_act; if issued from non-task context, use

ican_act.

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl ()

ER_UINT actcnt;

actent = can act(ID task2);
void task2 ()
ext tsk();

<<Example statement in assembly language>>
. INCLUDE mr308.inc

.GLB task
task:
PUSHM A0

can_act #ID_TASK2

sta_tsk Activate task with a start code
ista_tsk Activate task with a start code (handler only)

[[C Language API]|
ER ercd = sta tsk(ID tskid,VP_INT stacd);
ER ercd = ista tsk (ID tskid,VP_ INT stacd);

@ Parameters
ID tskid ID number of the target task

VP_INT stacd Task start code

@ Return Parameters
ER ercd Terminated normally (E_OK) or error code

[[Assembly language API 1]

.include mr308.inc
Sta_tsk TSKID, STACD
ista_tsk TSKID, STACD

@ Parameters
TSKID ID number of the target task

STATCD Task start code

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R1 Task start code (16 low-order bits)
R3 Task start code (16 high-order bits)
AO ID number of the target task
[[Exror code 1]
E_OBJ Object status invalid (task indicated by tskid is not DOMANT state)

[[Functional description]]

This service call starts the task indicated by tskid. In other words, it places the specified task from
DORMANT state into READY state or RUNNING state. This service call does not enqueue task
activation requests. Therefore, if a task activation request is issued while the target task is not
DORMANT state, the error code E_OBJ is returned to the service call issuing task. This service call is
effective only when the specified task is in DORMANT state. The task start code stacd is 32 bits long.
This task start code is passed as parameter to the activated task.
If a task is restarted that was once terminated by ter_tsk or ext_tsk, the task performs the following as
it starts up.

1. Initializes the current priority of the task.

2. Clears the number of queued wakeup requests.

3. Clears the number of nested forcible wait requests.
If this service call is to be issued from task context, use sta_tsk; if issued from non-task context, use
ista_tsk.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()

ER ercd;
VP_INT stacd = 0;
ercd = sta_ tsk(ID task2, stacd);

void task2 (VP_INT msg)

if (msg == 0)

}

<<Example statement in assembly language>>
. INCLUDE mr308.inc

.GLB task
task:
PUSHM AO,R1,R3

sta_tsk #ID TASK4,#012345678H

ext_tsk Terminates invoking task

[[C Language API]]
ER ercd = ext tsk();

@ Parameters
None

® Return Parameters
Not return from this service call

[[Assembly language API 1]

.include mr308.inc
ext tsk

® Parameters
None

® Register contents after service call is issued
Not return from this service call

[[Error code]

Not return from this service call
[[Functional description 1]

This service call terminates the invoking task. In other words, it places the issuing task from RUNNING
state into DORMANT state. However, if the activation request count for the issuing task is 1, the
activation request count is decremented by 1, and processing similar to that of act_tsk or iact_tsk is
performed. In that case, the task is placed from DORMANT state into READY state. The task has its
extended information passed to it as parameter when the task starts up.

This service call is designed to be issued automatically at return from a task.

In the invocation of this service call, the resources the issuing task had acquired previously (e.g.,

semaphore) are not released.

This service call can only be used in task context. This service call can be used even in a CPU locked

state, but cannot be used in non-task context.

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task(void)

ext tsk();

<<Example statement in assembly language>>
. INCLUDE mr308.inc
.GLB task

task:

ext tsk

ter_tsk Terminate task

[[C Language API]]

ER ercd = ter tsk(ID tskid);

@ Parameters
ID tskid ID number of the forcibly terminated task

@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]
.include mr308.inc
ter tsk TSKID

® Parameters
TSKID ID number of the forcibly terminated task

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 ID number of the target task
[[Error code]I
E_OBJ Object status invalid(task indicated by tskid is an inactive state)
E_ILUSE Service call improperly used task indicated by tskid is the issuing task itself)

[[Functional description 1]
This service call terminates the task indicated by tskid. If the activation request count of the target task
is equal to or greater than 1, the activation request count is decremented by 1, and processing similar
to that of act_tsk or iact_tsk is performed. In that case, the task is placed from DORMANT state into
READY state. The task has its extended information passed to it as parameter when the task starts
up.
If a task specifies its own task ID or TSK_SELF, an E_ILUSE error is returned.
If the specified task was placed into WAITING state and has been enqueued in some waiting queue,
the task is dequeued from it by execution of this service call. However, the semaphore and other
resources the specified task had acquired previously are not released.
If the task indicated by tskid is in DORMANT state, it returns the error code E_OBJ as a return value
for the service call.
This service call can only be used in task context, and cannot be used in non-task context.

10

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

ter tsk(ID main);

}

<<Example statement in assembly language>>
. INCLUDE mr308.inc

.GLB task
task:
PUSHM AQ

ter tsk #ID TASK3

11

chg_pri Change task priority
ichg_pri Change task priority(handler only)

[[C Language API]]

ER ercd = chg pri(ID tskid, PRI tskpri);
ER ercd = ichg pri(ID tskid, PRI tskpri);

o Parameters

ID tskid ID number of the target task
PRI tskpri Priority of the target task
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]

.include mr308.inc
chg pri TSKID, TSKPRI
ichg pri TSKID, TSKPRI

@ Parameters
TSKID ID number of the target task

TSKPRI Priority of the target task

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R3 Priority of the target task
AO ID number of the target task
[[Error code]I
E_OBJ Object status invalid(task indicated by tskid is an inactive state)

12

[[Functional description]]
This service call changes the priority of the task indicated by tskid to the value indicated by tskpri, and
performs rescheduling based on the result of that priority change. Therefore, if this service call is
executed on a task enqueued in a ready queue (including one that is in an executing state) or a task in
a waiting queue in which tasks are enqueued in order of priority, the target task is moved to behind the
tail of a relevant priority part of the queue. Even when the same priority as the previous one is
specified, the task is moved to behind the tail of the queue.
The smaller the number, the higher the task priority, with 1 assigned the highest priority. The minimum
value specifiable as priority is 1. The specifiable maximum value of priority is the maximum value of
priority specified in a configuration file, providing that it is within the range 1 to 255. For example, if
system specification in a configuration file is as follows,

system{ stack size = 0x100;
priority = 13;
}i

then priority can be specified in the range 1 to 13.
If TSK_SELF is specified, the priority of the issuing task is changed. If TSK_SELF is specified for tskid
in non-task context, operation of the service call cannot be guaranteed. If TPRI_INI is specified, the
task has its priority changed to the initial priority that was specified when the task was created. The
changed task priority remains effective until the task is terminated or this service call is executed
again.
If the task indicated by tskid is in DORMANT state, it returns the error code E_OBJ as a return value
for the service call. Since the M3T-MR308 does not support the mutex function, in no case will the
error code E_ILUSE be returned.
If this service call is to be issued from task context, use chg_pri; if issued from non-task context, use
ichg_pri.

[[Example program statement 1]

<<Example statement in C language>>

#include <itron.h>
#include <kernel.h>

#include “kernel id.h”
void task()

chg_ﬁri(ID task2, 2);

<<Example statement in assembly language>>
. INCLUDE mr308.inc

.GLB task
task:
pushm AO0,R3

chg pri #ID TASK3, #1

13

get_pri Reference task priority
iget_pri Reference task priority(handler only)

[[C Language API]]
ER ercd = get pri(ID tskid, PRI *p tskpri);
ER ercd = iget pri(ID tskid, PRI *p tskpri);

@ Parameters
ID tskid ID number of the target task

PRI *p_tskpri Pointer to the area to which task priority is returned

@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]
.include mr308.inc
get pri TSKID
iget pri TSKID

@ Parameters
TSKID ID number of the target task

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 Acquired task priority
[Error code]]
E_OBJ Object status invalid(task indicated by tskid is an inactive state)

[[Functional description 1]
This service call returns the priority of the task indicated by tskid to the area indicated by p-tskpri. If
TSK_SELF is specified, the priority of the issuing task itself is acquired. If TSK_SELF is specified for
tskid in non-task context, operation of the service call cannot be guaranteed.
If the task indicated by tskid is in DORMANT state, it returns the error code E_OBJ as a return value
for the service call.
If this service call is to be issued from task context, use get_pri; if issued from non-task context, use
iget_pri.

14

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

PRI p tskpri;
ER ercd;

ercd = get_pri(ID_task2, &p tskpri);

<<Example statement in assembly language>>
. INCLUDE mr308.inc

.GLB task
task:
PUSHM AQ

get_pri #ID_ TASK2

15

ref_tsk Reference task status
iref_tsk Reference task status (handler only)

[[C Language API]]
ER ercd = ref tsk(ID tskid, T RTSK *pk rtsk);
ER ercd = iref tsk(ID tskid, T RTSK *pk rtsk);

@ Parameters
ID tskid ID number of the target task

T RTSK *pk_rtsk Pointer to the packet to which task status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)

Contents of pk rtsk
typedef struct t rtsk{

STAT tskstat +0 2 Task status
PRI tskpri +2 2 Current priority of task
PRI tskbpri +4 2 Base priority of task
STAT tskwait +6 2 Cause of wait
ID wobjid +8 2 Waiting object ID
TMO lefttmo +10 4 Left time before timeout
UINT actent +14 2 Number of queued activation request counts
UINT wupcnt +16 2 Number of queued wakeup request counts
UINT suscnt +18 2 Number of nested suspension request counts
} T RTSK;
[[Assembly language API 1]

.include mr308.inc
refitsk TSKID, PK RTSK
iref_tsk TSKID, PK_RTSK

@ Parameters
TSKID ID number of the target task

PK_RTSK Pointer to the packet to which task status is returned

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code

AO ID number of the target task

A1 Pointer to the packet to which task status is returned
[[Error code 1]

None

16

[[Functional description]]
This service call inspects the status of the task indicated by tskid and returns the current information
on that task to the area pointed to by pk_rtsk as a return parameter. If TSK_SELF is specified, the
status of the issuing task itself is inspected. If TSK_SELF is specified for tskid in non-task context,
operation of the service call cannot be guaranteed.
@ tskstat (task status)
tskstat has one of the following values returned to it depending on the status of the specified task.
TTS_RUN(0x0001) RUNNING state
TTS_RDY(0x0002) READY state
TTS_WAI(0x0004) WAITING state
TTS_SUS(0x0008) SUSPENDED state
TTS_WAS(0x000C) WAITING-SUSPENDED state
TTS_DMT(0x0010) DORMANT state
@ tskpri (current priority of task)
tskpri has the current priority of the specified task returned to it. If the task is in DOMANT state,
tskpri is indeterminate.
@ tskbpri (base priority of task)
tskbpri has the base priority of the specified task returned to it. Since the M3T-MR308 does not
support the mutex function, tskpri and tskbpri assume the same value. If the task is in DOMANT
state, tskbpri is indeterminate.
& tskwait (cause of wait)
If the target task is in a wait state, one of the following causes of wait is returned. The values of
the respective causes of wait are listed below. If the task status is other than a wait state
(TTS_WAI or TTS_WAS), tskwait is indeterminate.
TTW_SLP (0x0001) Kept waiting by slp_tsk or tslp_tsk
TTW_DLY (0x0002) Kept waiting by dly_tsk
TTW_SEM (0x0004) Kept waiting by wai_sem or twai_sem
TTW_FLG (0x0008) Kept waiting by wai_flg or twai_flg
TTW_SDTQ(0x0010) Kept waiting by snd_dtq or tsnd_dtq
TTW_RDTQ(0x0020) Kept waiting by rcv_dtq or trcv_dtq
TTW_MBX (0x0040) Kept waiting by rcv_mbx or trcv_mbx
TTW_MPF (0x2000) Kept waiting by get_mpf or tget_mpf
TTW_VSDTQ (0x4000) Kept waiting by vsnd_dtq or vtsnd_dtq3
TTW_VRDTQ(0x8000) Kept waiting by vrcv_dtq or vtrcv_dtq
€ wobjid (waiting object ID)
If the target task is in a wait state (TTS_WAI or TTS_WAS), the ID of the waiting target object is
returned. Otherwise, wobijid is indeterminate.
@ lefttmo(left time before timeout)
If the target task has been placed in WAITING state (TTS_WAI or TTS_WAS) by other than
dly_tsk, the left time before it times out is returned. If the task is kept waiting perpetually,
TMO_FEVR is returned. Otherwise, lefttmo is indeterminate.
@ actcnt(task activation request)
The number of currently queued task activation request is returned.
€ wupcnt (wakeup request count)
The number of currently queued wakeup requests is returned. If the task is in DORMANT state,
wupcnt is indeterminate.
€ suscnt (suspension request count)
The number of currently nested suspension requests is returned. If the task is in DORMANT state,
suscnt is indeterminate.

If this service call is to be issued from task context, use ref_tsk; if issued from non-task context, use
iref_tsk.

3 TTW_VSDTQ and TTW_VRDTQ are the causes of wait outside the scope of uLITRON 4.0 Specification.
- 17 -

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RTSK rtsk;
ER ercd;

ercd = ref tsk(ID main, &rtsk);

}

<<Example statement in assembly language>>
_refdata: .blkb 20

.include mr308.inc

.GLB task
task:
PUSHM AQ,Al

ref tsk #TSK_SELF, #_refdata

18

ref_tst Reference task status (simplified version)
iref_tst Reference task status (simplified version, handler
only)

[[C Language API]]
ER ercd = ref tst(ID tskid, T RTST *pk rtst);
ER ercd = iref tst(ID tskid, T RTST *pk rtst);

@ Parameters
ID tskid ID number of the target task

T_RTST *pk_rtst Pointer to the packet to which task status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)

Contents of pk rtsk

typedef struct t rtst{
STAT tskstat +0 2 Task status
STAT tskwait +2 2 Cause of wait

} T RTST;

[[Assembly language API 1]

.include mr308.inc

ref tst TSKID, PK RTST

iref tst TSKID, PK RTST

@ Parameters
TSKID ID number of the target task

PK_RTST Pointer to the packet to which task status is returned

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code

A0 ID number of the target task

A1 Pointer to the packet to which task status is returned
[[Error code]I

None

19

[[Functional description]]
This service call inspects the status of the task indicated by tskid and returns the current information
on that task to the area pointed to by pk_rtst as a return value. If TSK_SELF is specified, the status of
the issuing task itself is inspected. If TSK_SELF is specified for tskid in non-task context, operation of
the service call cannot be guaranteed.

@ tskstat (task status)
tskstat has one of the following values returned to it depending on the status of the specified task.

TTS_RUN(0x0001) RUNNING state

TTS_RDY(0x0002) READY state

TTS_WAI(0x0004) WAITING state

TTS_SUS(0x0008) SUSPENDED state

TTS_WAS(0x000C) WAITING-SUSPENDED state

TTS_DMT(0x0010) DORMANT state

@ tskwait (cause of wait)
If the target task is in a wait state, one of the following causes of wait is returned. The values of
the respective causes of wait are listed below. If the task status is other than a wait state
(TTS_WAI or TTS_WAS), tskwait is indeterminate.

TTW_SLP (0x0001) Kept waiting by slp_tsk or tslp_tsk

TTW_DLY (0x0002) Kept waiting by dly_tsk

TTW_SEM (0x0004) Kept waiting by wai_sem or twai_sem

TTW_FLG (0x0008) Kept waiting by wai_flg or twai_flg

TTW_SDTQ(0x0010) Kept waiting by snd_dtq or tsnd_dtq

TTW_RDTQ(0x0020) Kept waiting by rcv_dtq or trcv_dtq

TTW_MBX (0x0040) Kept waiting by rcv_mbx or trcv_mbx

TTW_MPF (0x2000) Kept waiting by get_mpf or tget._mpf

TTW_VSDTQ (0x4000) Kept waiting by vsnd_dtq or vtsnd_dtq*

TTW_VRDTQ(0x8000) Kept waiting by vrcv_dtq or vtrcv_dtq

If this service call is to be issued from task context, use ref _tst; if issued from non-task context, use
iref_tst.

4 TTW_VSDTQ and TTW_VRDTQ are the causes of wait outside the scope of pITRON 4.0 Specification.
- 20 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

T RTST rtst;
ER ercd;

ercd = ref tst(ID main, &rtst);

<<Example statement in assembly language>>

_refdata: .blkb 4
.include mr308.inc
.GLB task
task:
PUSHM AQ,Al

ref_tst #ID_TASK2,#_refdata

21

1.2. Task Dependent Synchronization Function
Specifications of the task-dependent synchronization function are listed in Table 2 below.

Item No. | Item Content
1| Maximum value of task wakeup request count 255
2 | Maximum number of nested forcible task wait requests count 1

Table 2 . Specifications of the Task Dependent Synchronization Function

slp_tsk Put task to sleep
tslp_tsk Put task to sleep (with timeout)
[[C Language API]]

ER ercd = slp tsk();
ER ercd = tslp tsk(TMO tmout);

® Parameters

® slp tsk
Nong
® <tslp tsk
TMO tmout Timeout value

@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]
.include mr308.inc
slp tsk
tslp tsk TMO

® Parameters
TMO Timeout value

® Register contents after service call is issued

tslp tsk
Register name Content after service call is issued
RO Error code
R1 Timeout value (16 low-order bits)
R3 Timeout value (16 high-order bits)

slp_ tsk
Register name Content after service call is issued
RO Error code

[[Error code]I
E_TMOUT Timeout value
E_RLWAI Forced release from waiting

22

[[Functional description]]

This service call places the issuing task itself from RUNNING state into sleeping wait state. The task
placed into WAITING state by execution of this service call is released from the wait state in the
following cases:
€ When a task wakeup service call is issued from another task or an interrupt

The error code returned in this case is E_OK.
€@ When a forcible awaking service call is issued from another task or an interrupt

The error code returned in this case is E_RLWAI.
€4 When the first time tick occurred after tmout elapsed (for tslp_tsk)

The error code returned in this case is E_ TMOUT.
If the task receives sus_tsk issued from another task while it has been placed into WAITING state by
this service call, it goes to WAITING-SUSPENDED state. In this case, even when the task is released
from WAITING state by a task wakeup service call, it still remains in SUSPENDED state, and its
execution cannot be resumed until rsm_tsk is issued.
The service call tslp_tsk may be used to place the issuing task into sleeping state for a given length of
time by specifying tmout in a parameter to it. The parameter tmout is expressed in ms units. For
example, if this service call is written as tslp_tsk(10);, then the issuing task is placed from RUNNING
state into WAITING state for a period of 10 ms. If specified as tmout =TMO_FEVR(-1), the task will be
kept waiting perpetually, with the service call operating the same way as slp_tsk.
The values specified for tmout must be within Ox7FFFFFFF. If any value exceeding this limit is
specified, operation of the service call cannot be guaranteed.
This service call can only be issued from task context, and cannot be issued from non-task context.

23

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

if(slp _tsk() != E _OK)
error (“Forced wakeup\n”) ;

if (tslp_tsk(10) == E_TMOUT)
error (“time out\n”) ;

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
task:

slp tsk

PUSHM R1,R3

tslp_tsk #TMO_FEVR

PUSHM R1,R3
tslp tsk #100

24

wup_tsk Wakeup task
iwup_tsk Wakeup task (handler only)

[[C Language API]]
ER ercd = wup tsk(ID tskid);
ER ercd = iwup_tsk(ID tskid);

@ Parameters
ID tskid ID number of the target task

@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API]]
.include mr308.inc
wup tsk TSKID
iwup tsk TSKID

@ Parameters
TSKID ID number of the target task

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
AO ID number of the target task
[[Error code]
E_OBJ Object status invalid(task indicated by tskid is an inactive state)
E_QOVR Queuing overflow

[[Functional description 1]
If the task specified by tskid has been placed into WAITING state by slp_tsk or tslp_tsk, this service
call wakes up the task from the sleeping state to place it into READY or RUNNING state. Or if the task
specified by tskid is in WAITING-SUSPENDED state, this service call awakes the task from only the
sleeping state so that the task goes to SUSPEND state.
If a wakeup request is issued while the target task remains in DORMANT state, the error code E_OBJ
is returned to the service call issuing task. If TSK_SELF is specified for tskid, it means specifying the
issuing task itself. If TSK_SELF is specified for tskid in non-task context, operation of the service call
cannot be guaranteed.
If this service call is issued to a task that has not been placed in WAITING state or in
WAITING-SUSPENDED state by execution of slp_tsk or tslp_tsk, the wakeup request is accumulated.
More specifically, the wakeup request count for the target task to be awakened is incremented by 1, in
which way wakeup requests are accumulated.
The maximum value of the wakeup request count is 255. If while the wakeup request count = 255 a
new wakeup request is generated exceeding this limit, the error code E_QOVR s returned to the task
that issued the service call, with the wakeup request count left intact.
If this service call is to be issued from task context, use wup_tsk; if issued from non-task context, use
iwup_tsk.

25

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

if(wup_tsk(ID main) != E OK)
printf (“Can’t wakeup main()\n”);

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
task:
PUSHM AQ

wup_tsk #ID_TASK1

26

can_wup Cancel wakeup request

ican_wup Cancel wakeup request (handler only)

[[C Language API]]

ER UINT wupcnt = can _wup(ID tskid);
ER UINT wupcnt = ican wup(ID tskid);

@ Parameters
ID tskid ID number of the target task

@ Return Parameters
ER_UINT wupcnt >0 Canceled wakeup request count
wupcnt <0 Error code
[[Assembly language API]]
.include mr308.inc
can _wup TSKID
ican _wup TSKID

® Parameters
TSKID ID number of the target task

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code,Canceled wakeup request count
A0 ID number of the target task
[[Error code]
E_OBJ Object status invalid(task indicated by tskid is an inactive state)

[[Functional description]

This service call clears the wakeup request count of the target task indicated by tskid to 0. This means
that because the target task was in either WAITING state nor WAITING-SUSPENDED state when an
attempt was made to wake it up by wup_tsk or iwup_tsk before this service call was issued, the
attempt resulted in only accumulating wakeup requests and this service call clears all of those

accumulated wakeup requests.

Furthermore, the wakeup request count before being cleared to 0 by this service call, i.e., the number
of wakeup requests that were issued in vain (wupcnt) is returned to the issuing task. If a wakeup
request is issued while the target task is in DORMANT state, the error code E_OBJ is returned. If
TSK_SELF is specified for tskid, it means specifying the issuing task itself.

If this service call is to be issued from task context, use can_wup; if issued from non-task context, use

ican_wup.

27

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

ER_UINT wupcnt;

wupcnt = can_wup (ID main) ;
if(wup_cnt > 0)
printf (“wupcnt = %$d\n”,wupcnt) ;

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
task:
PUSHM AQ

can_wup #ID TASK3

28

rel_wai Release task from waiting
irel_wai Release task from waiting (handler only)

[[C Language API]]
ER ercd = rel wai(ID tskid);
ER ercd = irel wai(ID tskid);

o Parameters

ID tskid ID number of the target task
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API]]

.include mr308.inc
rel wai TSKID
irel wai TSKID

@ Parameters
TSKID ID number of the target task

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
AO ID number of the target task
[[Error code]
E_OBJ Object status invalid(task indicated by tskid is not an wait state)

[[Functional description 1]
This service call forcibly release the task indicated by tskid from waiting (except SUSPENDED state)
to place it into READY or RUNNING state. The forcibly released task returns the error code E_RLWAI.
If the target task has been enqueued in some waiting queue, the task is dequeued from it by execution
of this service call.
If this service call is issued to a task in WAITING-SUSPENDED state, the target task is released from
WAITING state and goes to SUSPENDED state.’
If the target task is not in a wait state, the error code E_OBJ is returned to the service call issuing task.
This service call forbids specifying the issuing task itself for tskid.
If this service call is to be issued from task context, use rel_wai; if issued from non-task context, use
irel_wai.

5 This means that tasks cannot be resumed from SUSPENDED state by this service call. Only the rsm_tsk, irsm_tsk, frsm_tsk,
and ifrsm_tsk service calls can release them from SUSPENDED state.

29

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

if(rel wai(ID main) != E OK)
error(“*Can’t rel wai main()\n”);

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
task:
PUSHM AQ

rel wai #ID TASK2

30

sus_tsk Suspend task
isus_tsk Suspend task (handler only)

[[C Language API]]
ER ercd = sus_tsk(ID tskid);
ER ercd = isus_tsk(ID tskid);

@ Parameters
ID tskid ID number of the target task

@ Return Parameters
ER ercd Terminated normally (E_OK) or error code

[[Assembly language API]]

.include mr308.inc
sus_tsk TSKID
isus tsk TSKID

@ Parameters
TSKID ID number of the target task

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
AO ID number of the target task
[[Error code]
E_OBJ Object status invalid(task indicated by tskid is an inactive
state)
E_QOVR Queuing overflow

[[Functional description 1]

This service call aborts execution of the task indicated by tskid and places it into SUSPENDED state.
Tasks are resumed from this SUSPENDED state by the rsm_tsk, irsm_tsk, frsm_tsk, or ifrsm_tsk
service call. If the task indicated by tskid is in DORMANT state, it returns the error code E_OBJ as a
return value for the service call.

The maximum number of suspension requests by this service call that can be nested is 1. If this
service call is issued to a task which is already in SUSPENDED state, the error code E_QOVR is

returned.

This service call forbids specifying the issuing task itself for tskid.
If this service call is to be issued from task context, use sus_tsk; if issued from non-task context, use

isus_tsk.

31

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

if(sus_tsk(ID main) != E_OK)
printf (“Can’t suspend task main()\n”);

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
task:
PUSHM AQ

sus_tsk #ID_TASK2

32

rsm_tsk Resume suspended task

irsm_tsk Resume suspended task(handler only)
frsm_tsk Forcibly resume suspended task

ifrsm_tsk Forcibly resume suspended task(handler only)
[[C Language API]]

ER ercd = rsm tsk(ID tskid);
ER ercd = irsm tsk(ID tskid)
ER ercd frsm tsk(ID tskid)
ER ercd = ifrsm tsk(ID tskid

) .

Iz

® Parameters
ID tskid ID number of the target task

@ Return Parameters

ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]

.include mr308.inc

rsm tsk TSKID

irsm tsk TSKID

frsm tsk TSKID

ifrsm tsk TSKID

® Parameters
TSKID ID number of the target task

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
AO ID number of the target task
[[Error code]
E_OBJ Object status invalid(task indicated by tskid is not a forcible wait state)

[[Functional description 1]
If the task indicated by tskid has been aborted by sus_tsk, this service call resumes the target task
from SUSPENDED state. In this case, the target task is linked to behind the tail of the ready queue. In
the case of frsm_tsk and ifrsm_tsk, the task is forcibly resumed from SUSPENDED state.
If a request is issued while the target task is not in SUSPENDED state (including DORMANT state),
the error code E_OBJ is returned to the service call issuing task.
The rsm_tsk, irsm_tsk, frsm_tsk, and ifrsm_tsk service calls each operate the same way, because the
maximum number of forcible wait requests that can be nested is 1.
If this service call is to be issued from task context, use rsm_tsk/frsm_tsk; if issued from non-task
context, use irsm_tsk/ifrsm_tsk.

33

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void taskl()

if(rsm _tsk(ID main) != E OK)
printf (“*Can’t resume main()\n”);

if (frsm _tsk(ID task2) != E OK)
printf (“Can’t forced resume task2()\n”);

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
task:

PUSHM AQ

rsm_tsk #ID_TASK2

PUSHM AQ

frsm tsk #ID TASK1

34

dly_tsk Delay task

[[C Language API]]

ER ercd = dly tsk(RELTIM dlytim);

@ Parameters

RELTIM dlytim Delay time
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]

.include mr308.inc
dly_tsk RELTIM

o Parameters
RELTIM Delay time

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R1 Delay time (16 low-order bits)
R3 Delay time (16 high-order bits)
[[Error code]I
E_RLWAI Forced release from waiting

[[Functional description 1]

This service call temporarily stops execution of the issuing task itself for a duration of time specified by
dlytim to place the task from RUNNING state into WAITING state. In this case, the task is released
from the WAITING state at the first time tick after the time specified by dlytim has elapsed. Therefore,
if specified dlytim = 0, the task is placed into WAITING state briefly and then released from the
WAITING state at the first time tick.
The task placed into WAITING state by invocation of this service call is released from the WAITING
state in the following cases. Note that when released from WAITING state, the task that issued the
service call is removed from the timeout waiting queue and linked to a ready queue.
@ When the first time tick occurred after dlytim elapsed

The error code returned in this case is E_OK.
€ When the rel_wai or irel_wai service call is issued before dlytim elapses

The error code returned in this case is E_RLWAI.
Note that even when the wup_tsk or iwup_tsk service call is issued during the delay time, the task is
not released from WAITNG state.
The delay time dlytim is expressed in ms units. Therefore, if specified as dly_tsk(50);, the issuing task
is placed from RUNNING state into a delayed wait state for a period of 50 ms.
The values specified for dlytim must be within OxX7FFFFFFF. If any value exceeding this limit is
specified, the service call may not operate correctly.
This service call can be issued only from task context. It cannot be issued from non-task context.

35

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()

if (dly tsk() != E _OK)
error (“Forced wakeup\n”) ;

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
task:
PUSHM R1,R3

dly tsk #500

36

1.3. Synchronization & Communication Function (Semaphore)
Specifications of the semaphore function of MR308 are listed in Table 3. Specifications of the
Semaphore Function.

Item No. [tem Content
1 | Semaphore ID 1-255
2 | Maximum number of resources 1-65535

TA_FIFO: Tasks enqueued in order of FIFO

3|S h ttribut
emaphore attribute TA_TPRI: Tasks enqueued in order of priority

Table 3. Specifications of the Semaphore Function

sig_sem Release semaphore resource
isig_sem Release semaphore resource (handler only)
[[C Language API]l

ER ercd = sig sem(ID semid);
ER ercd = isig _sem(ID semid);

@ Parameters
ID semid Semaphore ID number to which returned

@ Return Parameters
ER ercd Terminated normally (E_OK) or error code

[[Assembly language API 1]

.include mr308.inc
sig sem SEMID
isig_sem SEMID

® Parameters
SEMID Semaphore ID number to which returned

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code

A0 Semaphore ID number to which returned
[[Error code]I

E_QOVR Queuing overflow

[[Functional description 1]
This service call releases one resource to the semaphore indicated by semid.
If tasks are enqueued in a waiting queue for the target semaphore, the task at the top of the queue is
placed into READY state. Conversely, if no tasks are enqueued in that waiting queue, the semaphore
resource count is incremented by 1. If an attempt is made to return resources (sig_sem or isig_sem
service call) causing the semaphore resource count value to exceed the maximum value specified in a
configuration file (maxsem), the error code E_QOVR is returned to the service call issuing task, with
the semaphore count value left intact.
If this service call is to be issued from task context, use sig_sem; if issued from non-task context, use
isig_sem.

37

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()

if(sig sem(ID sem) == E QOVR)
error (“Overflow\n”) ;

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
task:
PUSHM AQ

sig_sem #ID_SEM2

38

wai_sem Acquire semaphore resource

pol_sem Acquire semaphore resource (polling)
ipol_sem Acquire semaphore resource (polling, handler
only)
twai_sem Acquire semaphore resource(with timeout)
[[C Language API]]
ER ercd = wai_sem(ID semid);
ER ercd = pol sem(ID semid);
ER ercd = ipol sem(ID semid);
ER ercd = twai sem(ID semid, TMO tmout);

@ Parameters
ID semid Semaphore ID number to be acquired

TMO tmout Timeout value (for twai_sem)

@ Return Parameters
ER ercd Terminated normally (E_OK) or error code

[[Assembly language API 1]

.include mr308.inc

wai sem SEMID

pol sem SEMID

ipol sem SEMID

twai sem SEMID, TMO

@ Parameters
SEMID Semaphore ID number to be acquired

TMO Timeout value(twai_sem)

[Register contents after service call is issued
wai_sem,pol sem,ipol_ sem
Register name Content after service call is issued

RO Error code
AO Semaphore ID number to be acquired
twai_sem
Register Content after service call is issued
name
RO Error code
R1 Timeout value(16 low-order bits)
R3 Timeout value(16 high-order bits)
AO Semaphore ID number to be acquired
[[Error code]
E_RLWAI Forced release from waiting
E_TMOUT Polling failure or timeout

39

[[Functional description]]
This service call acquires one semaphore resource from the semaphore indicated by semid.
If the semaphore resource count is equal to or greater than 1, the semaphore resource count is
decremented by 1, and the service call issuing task continues execution. On the other hand, if the
semaphore count value is 0, the wai_sem or twai_sem service call invoking task is enqueued in a
waiting queue for that semaphore. If the attribute of the semaphore semid is TA_TFIFO, the task is
enqueued in order of FIFO; if TA_TPRI, the task is enqueued in order of priority. For the pol_sem and
ipol_sem service calls, the task returns immediately and responds to the call with the error code
E_TMOUT.
For the twai_sem service call, specify a wait time for tmout in ms units. The values specified for tmout
must be within OX7FFFFFFF. If any value exceeding this limit is specified, operation of the service call
cannot be guaranteed. If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value,
in which case the service call operates the same way as pol_sem. Furthermore, if specified as
tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which case the service call operates the
same way as wai_sem.
The task placed into WAITING state by execution of the wai_sem or twai_sem service call is released
from the WAITING state in the following cases:
€ When the sig_sem or isig_sem service call is issued before the tmout time elapses, with
task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.
€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain
unsatisfied
The error code returned in this case is E_ TMOUT.
€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service
call issued from another task or a handler
The error code returned in this case is E_RLWAI.

If this service call is to be issued from task context, use wai_sem, twai_sem, or pol_sem; ; if issued
from non-task context, use ipol_sem.

40

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”

void task()

if (wai_sem('ID_sem) != E OK)
printf (“Forced wakeup\n”) ;

if(pol sem(ID sem) != E OK)
printf (“Timeout\n”) ;

if(twai_sem(ID sem, 10) != E OK)
printf (“Forced wakeup or Timeout”n”) ;

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB
task:

PUSHM
pol_sem

PUSHM
wal sem

PUSHM
twai_sem

task
AQ
#ID_ SEM1

A0
#ID SEM2

AQ,R1,R3
#ID SEM3,300

41

ref_ sem Reference semaphore status
iref_sem Reference semaphore status (handler only)
[[C Language API]]

ER ercd = ref sem(ID semid, T RSEM *pk rsem);
ER ercd = iref sem(ID semid, T RSEM *pk rsem);

@ Parameters
ID semid ID number of the target semaphore

T _RSEM *pk_rsem Pointer to the packet to which semaphore status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)

T RSEM *pk_rsem Pointer to the packet to which semaphore status is returned
Contents of pk rsem

typedef struct t rsemf{

ID wiskid +0 2 ID number of the task at the head of the semaphore’s wait
queue
UINT semcnt +2 2 Current semaphore resource count
} T RSEM;
[[Assembly language API]]

.include mr308.inc
ref_sem SEMID, PK RSEM
iref sem SEMID, PK RSEM

® Parameters
SEMID ID number of the target semaphore

PK_RSEM Pointer to the packet to which semaphore status is returned

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code

AO ID number of the target semaphore

A1 Pointer to the packet to which semaphore status is returned
[[Exror code 1]

None

[[Functional description]]
This service call returns various statuses of the semaphore indicated by semid.
¢ wtskid
Returned to wtskid is the ID number of the task at the head of the semaphore’s wait queue (the

next task to be dequeued). If no tasks are kept waiting, TSK_NONE is returned.
4 semcnt

Returned to semcnt is the current semaphore resource count.

If this service call is to be issued from task context, use ref_sem; if issued from non-task context, use
iref_sem.

42

[[Example program statement 1]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel id.h”
void task()

T RSEM rsem;
ER ercd;

ercd = ref sem(ID seml, &rsem) ;

}

<<Example statement in assembly language>>

_ refsem: .blkb 4
.include mr308.1inc
.GLB task

task:

PUSHM AQ,Al
ref sem #ID SEM1,# refsem

43

1.4. Synchronization & Communication Function (Eventflag)
Specifications of the eventflag function of MR308 are listed in Table 4. .

Item No. | Item

1 | EventOflag ID 1-255
9 Number of bits comprising 16 bits
eventflag

TA_TFIFO: Waiting tasks enqueued in order of FIFO
TA_TPRI: Waiting tasks enqueued in order of priority

3 | Eventflag attribute TA_WSGL: Multiple tasks cannot be kept waiting
TA_WMUL: Multiple tasks can be kept waiting

TA_CLR: Bit pattern cleared when waiting task is released

Table 4. Specifications of the Eventflag Function

set_flg Set eventflag
iset_flg Set eventflag (handler only)
[[C Language API]]

ER ercd = set flg(ID flgid, FLGPTN setptn);
ER ercd iset flg(ID flgid, FLGPTN setptn);

o Parameters

ID flgid ID number of the eventflag to be set
FLGPTN setptn Bit pattern to be set
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API]]

.include mr308.inc
setiflg FLGID, SETPTN
iset_flg FLGID, SETPTN

® Parameters
FLGID ID number of the eventflag to be set

SETPTN Bit pattern to be set

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code

R3 Bit pattern to be set

AO Eventflag ID number
[[Error code]I

None

44

[[Functional description]]
Of the 16-bit eventflag indicated by flgid, this service call sets the bits indicated by setptn. In other
words, the value of the eventflag indicated by flgid is OR’d with setptn. If the alteration of the eventflag
value results in task-awaking conditions for a task that has been kept waiting for the eventflag by the
wai_flg or twai_flg service call becoming satisfied, the task is released from WAITING state and placed
into READY or RUNNING state.
Task-awaking conditions are evaluated sequentially beginning with the top of the waiting queue. If
TA_WMUL is specified as an eventflag attribute, multiple tasks kept waiting for the eventflag can be
released from WAITING state at the same time by one set flg or iset flg service call issued.
Furthermore, if TA_CLR is specified for the attribute of the target eventflag, all bit patterns of the
eventflag are cleared, with which processing of the service call is terminated.
If all bits specified in setptn are 0, no operation will be performed for the target eventflag, in which case
no errors are assumed, however.
If this service call is to be issued from task context, use set_flg; if issued from non-task context, use
iset_flg.
[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>

#include “kernel id.h”
void task(void)

set_flg(ID_flg, (FLGPTN) 0xE£00) ;

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
task:
PUSHM AO0, R3

set_flg #ID_FLG3,#0ff00H

45

cir_flg Clear eventflag
iclr_flg Clear eventflag (handler only)

[[C Language API]]
ER ercd = clr flg(ID flgid, FLGPTN clrptn);
ER ercd = iclr flg(ID flgid, FLGPTN clrptn);

o Parameters

ID flgid ID number of the eventflag to be cleared
FLGPTN clrptn Bit pattern to be cleared
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

.include mr308.inc
clr_flg FLGID, CLRPTN
iclriflg FLGID, CLRPTN

@ Parameters
FLGID ID number of the eventflag to be cleared

CLRPTN Bit pattern to be cleared

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
AO ID number of the eventflag to be cleared
R3 Bit pattern to be cleared
[[Error code 1]
None

[[Functional description 1]

Of the 16-bit eventflag indicated by flgid, this service call clears the bits whose corresponding values in
clrptn are 0. In other words, the eventflag bit pattern indicated by flgid is updated by AND’ing it with
clrptn. If all bits specified in clrptn are 1, no operation will be performed for the target eventflag, in

which case no errors are assumed, however.

If this service call is to be issued from task context, use clr_flg; if issued from non-task context, use

iclr_flg.

46

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task(void)

clr flg(ID flg, (FLGPTN) 0x£0£0);

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
task:
PUSHM A0, R3

clr flg #ID_FLG1,#0f0f0H

47

wai_flg Wait for eventflag

pol_flg Wait for eventflag(polling)

ipol_flg Wait for eventflag(polling, handler only)
twai_flg Wait for eventflag(with timeout)

[[C Language API]]

ER ercd = wai flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p flgptn);

ER ercd pol flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p flgptn);

ER ercd ipol flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p flgptn);

ER ercd = twai flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p flgptn,
TMO tmout);

@ Parameters
ID flgid ID number of the eventflag waited for

FLGPTN waiptn Wait bit pattern
MODE wfmode Wait mode
FLGPTN *p flgptn Pointer to the area to which bit pattern is returned when released from wait

TMO tmout Timeout value (for twai_flg)

® Return Parameters

ER ercd Terminated normally (E_OK) or error code
FLGPTN *p_flgptn Pointer to the area to which bit pattern is returned when released from wait
[[Assembly language API 1]

.include mr308.inc

waiiflg FLGID, WAIPTN, WFMODE
pol_flg FLGID, WAIPTN, WFMODE
ipol_flg FLGID, WAIPTN, WFMODE
twai_flq FLGID, WAIPTN, WFMODE, TMO

@ Parameters
FLGID ID number of the eventflag waited for

WAIPTN Wait bit pattern
WFMODE Wait mode
TMO Timeout value (for twai_flg)

o Register contents after service call is issued

Register name Content after service call is issued
RO Error code
R1 Wait mode
R2 bit pattern is returned when released from wait
R3 Wait bit pattern
AO ID number of the eventflag waited for
[[Error code]

E_RLWAI Forced release from waiting
E_TMOUT Polling failure or timeout or timed out
E_ILUSE Service call improperly used (Tasks present waiting for TA_ WSGL attribute eventflag)

48

[[Functional description]]
This service call waits until the eventflag indicated by flgid has its bits specified by waiptn set
according to task-awaking conditions indicated by wfmode. Returned to the area pointed to by p_flgptn
is the eventflag bit pattern at the time the task is released from WAITING state.
If the target eventflag has the TA WSGL attribute, or there are already other tasks waiting for the
eventflag, the error code E_ILUSE is returned.
If task-awaking conditions have already been met when this service call is invoked, the task returns
immediately and responds to the call with E_OK. If task-awaking conditions are not met and the
invoked service call is wai_flg or twai_flg, the task is enqueued in an eventflag waiting queue. In that
case, if the attribute of the specified eventflag is TA_TFIFO, the task is enqueued in order of FIFO; if
TA_TPRI, the task is enqueued in order of priority. For the pol_flg and ipol_flg service calls, the task
returns immediately and responds to the call with the error code E_TMOUT.
For the twai_flg service call, specify a wait time for tmout in ms units. The values specified for tmout
must be within OxX7FFFFFFF. If any value exceeding this limit is specified, the service call may not
operate correctly. If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in
which case the service call operates the same way as pol_flg. Furthermore, if specified as
tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which case the service call operates the
same way as wai_flg.

The task placed into a wait state by execution of the wai_flg or twai_flg service call is released from
WAITING state in the following cases:
€ When task-awaking conditions are met before the tmout time elapses
The error code returned in this case is E_OK.
€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain
unsatisfied
The error code returned in this case is E. TMOUT.
€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service
call issued from another task or a handler
The error code returned in this case is E_RLWAI.

The following shows how wfmode is specified and the meaning of each mode.

wfmdoe (wait mode) Meaning

TWF_ANDW Wait until all bits specified by waiptn are set (wait for the
bits AND’ed)

TWF_ORW Wait until one of the bits specified by waiptn is set (wait
for the bits OR’ed)

If this service call is to be issued from task context, use wai_flg,twai_flg,pol_flg; if issued from non-task
context, use ipol_flg.

49

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

UINT flgptn;

if (wai_ flg(ID_flg2, (FLGPTN)Ox0ff0, TWF ANDW, &flgptn)!=E OK)
error (“Wait Released\n”) ;

if (pol flg(ID flg2, (FLGPTN)Ox0ff0, TWF_ORW, &flgptn)!=E OK)
printf (“Not set EventFlag\n”) ;

if(twai flg(ID flg2, (FLGPTN)OxO0ff0, TWF_ANDW, &flgptn, 5) != E OK)
error (“Wait Released\n”) ;

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task

task:
PUSHM AO,R1,R3
wai flg #ID FLG1,#0003H, #TWF ANDW
PUSHM AO,R1,R3
pol flg #ID FLG2,#0008H, #TWF_ORW
PUSHM AO,R1,R3

wai flg #ID FLG3,#0003H, #TWF_ANDW, 20

50

ref_flg Reference eventflag status
iref_flg Reference eventflag status (handler only)

[[C Language API]]
ER ercd = ref flg(ID flgid, T RFLG *pk rflg);
ER ercd = iref flg(ID flgid, T RFLG *pk rflg);

o Parameters

ID flgid ID number of the target eventflag
T RFLG *pk_rflg Pointer to the packet to which eventflag status is returned
@ Return Parameters
ER ercd Terminated normally (E_OK)
T RFLG *pk_rflg Pointer to the packet to which eventflag status is
returned

Contents of pk rflg
typedef struct t rflg{

ID wtskid +0 2 Reception waiting task 1D
FLGPTN flgptn +2 2 Current eventflag bit pattern
} T RFLG;
[[Assembly language API 1]

.include mr308.inc
ref flg FLGID, PK RFLG
iref flg FLGID, PK RFLG

@ Parameters
FLGID ID number of the target eventflag

PK_RFLG Pointer to the packet to which eventflag status is returned

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code

AO ID number of the target eventflag

A1 Pointer to the packet to which eventflag status is returned
[[Error code]

None

[[Functional description 1]
This service call returns various statuses of the eventflag indicated by flgid.
¢ wtskid

Returned to wtskid is the ID number of the task at the top of a waiting queue (the next task to be
dequeued). If no tasks are kept waiting, TSK_NONE is returned.
¢ flgptn

Returned to flgptn is the current eventflag bit pattern.

If this service call is to be issued from task context, use ref flg; if issued from non-task context, use
iref_flg.

51

[[Example program statement 1]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel id.h”
void task()

T RFLG rflg;
ER ercd;

ercd': ref flg(ID FLG1l, &rflg);

}

<<Example statement in assembly language>>
_ refflg: .blkb 4
.include mr308.1inc

.GLB task
task:

PUSHM AQ,Al
ref flg #ID FLG1,# refflg

52

1.5. Synchronization & Communication Function (Data Queue)
Specifications of the data queue function of MR308 are listed in Table 5. Specifications of the Data
Queue Function.

Item No. | ltem Content
1 | Data queue ID 1-255
2 | Capacity (data bytes) in data queue area | 0-65535
3 | Data size 32 bits
TA_TFIFO: Waiting tasks enqueued in order
4 | Data queue attribute of FIFO
TA_TPRI: Waiting tasks enqueued in order of
priority
Table 5. Specifications of the Data Queue Function
snd_dtq Send to data queue
psnd_dtq Send to data queue (polling)
ipsnd_dtq Send to data queue (polling, handler only)
tsnd_dtq Send to data queue (with timeout)
fsnd_dtq Forced send to data queue
ifsnd_dtq Forced send to data queue (handler only)
[[C Language API]]
ER ercd = snd dtg(ID dtgid, VP _INT data);
ER ercd = psnd dtg(ID dtgid, VP INT data);
ER ercd = ipsnd dtqg(ID dtgid, VP _INT data);
ER ercd = tsnd dtg(ID dtgid, VP_INT data, TMO tmout);
ER ercd = fsnd dtg(ID dtgid, VP _INT data);
ER ercd = ifsnd dtg(ID dtgid, VP _INT data);

® Parameters

ID dtqid ID number of the data queue to which transmitted
TMO tmout Timeout value(tsnd_dtq)
VP_INT data Data to be transmitted

@ Return Parameters
ER ercd Terminated normally (E_OK) or error code

53

[[Assembly language API]]

.include mr308.inc

snd_dtq DTQID, DTQDATA
isnd dtq DTQID, DTQDATA
psnd_dtq DTQID, DTQDATA
ipsnd dtq DTQID, DTQDATA
tsnd dtq DTQID, DTQDATA, TMO
fsnd_dtq DTQID, DTQDATA
ifsnd dtq DTQID, DTQDATA

o Parameters

DTQID ID number of the data queue to which transmitted
DTQDATA Data to be transmitted
TMO Timeout value (tsnd_dtq)

® Register contents after service call is issued
snd_dtq,psnd_dtq,ipsnd_dtq,fsnd_dtq,ifsnd dtq
Register name Content after service call is issued

RO Error code
R1 Data to be transmitted (16 low-order bits)
R3 Data to be transmitted (16 high-order bits)
A0 ID number of the data queue to which transmitted
tsnd _dtg
Register name Content after service call is issued
RO Error code
R1 Data to be transmitted (16 low-order bits)
R2 Timeout value (16 high-order bits)
R3 Data to be transmitted (16 high-order bits)
A0 ID number of the data queue to which transmitted
[[Error code]I
E_RLWAI Forced release from waiting
E_TMOUT Polling failure or timeout or timed out
E_ILUSE Service call improperly used
(fsnd_dtq or ifsnd_dtq is issued for a data queue whose dtqcnt = 0)
EV_RST Released from WAITING state by clearing of the data queue area

[[Functional description 1]
This service call sends the 4-byte data indicated by data to the data queue indicated by dtqid. If any
task is kept waiting for reception in the target data queue, the data is not stored in the data queue and
instead sent to the task at the top of the reception waiting queue, with which the task is released from
the reception wait state.
On the other hand, if snd_dtq or tsnd_dtq is issued for a data queue that is full of data, the task that
issued the service call goes from RUNNING state to a data transmission wait state, and is enqueued
in transmission waiting queue, kept waiting for the data queue to become available. In that case, if the
attribute of the specified data queue is TA_TFIFO, the task is enqueued in order of FIFO; if TA_TPRI,
the task is enqueued in order of priority. For psnd_dtg and ipsnd_dtq, the task returns immediately and
responds to the call with the error code E_ TMOUT.
For the tsnd_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout
must be within 0x7FFFFFFF. If any value exceeding this limit is specified, the service call may not
operate correctly. If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in
which case the service call operates the same way as psnd_dtq. Furthermore, if specified as
tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which case the service call operates the
same way as snd_dtq.
If there are no tasks waiting for reception, nor is the data queue area filled, the transmitted data is
stored in the data queue.

54

The task placed into WAITING state by execution of the snd_dtq or tsnd_dtqg service call is released
from WAITING state in the following cases:

*

*

For
the

When the rcv_dtq, trcv_dtq, prcv_dtq, or iprcv_dtq service call is issued before the tmout
time elapses, with task-awaking conditions thereby satisfied

The error code returned in this case is E_OK.

When the first time tick occurred after tmout elapsed while task-awaking conditions remain
unsatisfied

The error code returned in this case is E_ TMOUT.

When the task is forcibly released from WAITING state by the rel_wai or irel_wai service
call issued from another task or a handler

The error code returned in this case is E_RLWAI.

When the target data queue being waited for is removed by the vrst_dtq service call issued
from another task

The error code returned in this case is EV_RST.

fsnd_dtq and ifsnd_dtq, the data at the top of the data queue or the oldest data is removed, and
transmitted data is stored at the tail of the data queue. If the data queue area is not filled with data,

fsnd_dtq and ifsnd_dtq operate the same way as snd_dtq.
If this service call is to be issued from task context, use snd_dtq,tsnd_dtq,psnd_dtq,fsnd_dtq; if issued
from non-task context, use ipsnd_dtq,ifsnd_dtq.

[[Example program statement]]

<<Exampl

e statement in C language>>

#include <itron.h>
#include <kernel.h>
#include “kernel id.h”

VP_INT

datal[10];

void task (void)

if

(snd_dtq(ID dtq, datal0]) == E RLWAI) {

error (“Forced released\n”) ;

if

(psnd dtq(ID dtg, datall])== E TMOUT) {

error (“Timeout\n”) ;

if

(tsnd dtq(ID dtq, data(2], 10) != E_ TMOUT) {

error (“Timeout \n”) ;

if

(fsnd dtq(ID dtg, datal3]) != E OK) {

error (“error\n”) ;

}

<<Example statement in assembly language>>

.inc

.GLB
_g_dtq:
task:

PUSH
tsnd

PUSH
psnd

PUSH
fsnd

lude mr308.inc

task
.LWORD 12345678H
M R1,R2,R3,A0
_dtg #ID DTQ1, g dtqg,#100
M R1,R3,A0
_dtg #ID DTQ2, #0FFFFH
M R1,R3,A0

_dtq #ID_DTQ3, #0ABCDH

55

rcv_dtq Receive from data queue

prcv_dtq Receive from data queue (polling)

iprcv_dtq Receive from data queue (polling, handler only)
trcv_dtq Receive from data queue (with timeout)

[[C Language API]]

ER ercd = rcv_dtg(ID dtgid, VP _INT *p data);

ER ercd = prcv_dtg(ID dtgid, VP_INT *p data);

ER ercd = iprcv _dtg(ID dtgid, VP _INT *p data);

ER ercd = trcv _dtg(ID dtgid, VP_INT *p data, TMO tmout);

® Parameters

ID dtqid ID number of the data queue from which to receive
TMO tmout Timeout value (trcv_dtq)
VP_INT *p_data Pointer to the beginning of the area in which received data is stored

o Return Parameters

ER ercd Terminated normally (E_OK) or error code
VP_INT *p_data Pointer to the beginning of the area in which received data is stored
[[Assembly language API]]

.include mr308.inc
rcv_dtg DTQID
prcv_dtg DTQID
iprcv_dtg DTQID
trcv_dtq DTQID, TMO

@ Parameters
DTQID ID number of the data queue from which to receive

TMO Timeout value (trcv_dtq)

® Register contents after service call is issued
rcv_dtq,prcv_dtq,iprcv_dtq
Register name Content after service call is issued

RO Error code

R1 Received data (16 low-order bits)

R3 Received data (16 high-order bits)

AO Data queue ID number

trcv_dtg

Register name Content after service call is issued

RO Error code

R1 Received data (16 low-order bits)

R2 Timeout value(16 high-order bits)

R3 Received data (16 high-order bits)

AO ID number of the data queue from which to receive
[[Error code]

E_RLWAI Forced release from waiting

E_TMOUT Polling failure or timeout or timed out

56

[[Functional description]]
This service call receives data from the data queue indicated by dtgid and stores the received data in
the area pointed to by p_data. If data is present in the target data queue, the data at the top of the
queue or the oldest data is received. This results in creating a free space in the data queue area, so
that a task enqueued in a transmission waiting queue is released from WAITING state, and starts
sending data to the data queue area.
If no data exist in the data queue and there is any task waiting to send data (i.e., data bytes in the data
queue area = 0), data for the task at the top of the data transmission waiting queue is received. As a
result, the task kept waiting to send that data is released from WAITING state.
On the other hand, if rcv_dtq or trcv_dtq is issued for the data queue which has no data stored in it,
the task that issued the service call goes from RUNNING state to a data reception wait state, and is
enqueued in a data reception waiting queue. At this time, the task is enqueued in order of FIFO. For
the prcv_dtq and iprcv_dtq service calls, the task returns immediately and responds to the call with the
error code E_ TMOUT.
For the trcv_dtqg service call, specify a wait time for tmout in ms units. The values specified for tmout
must be within Ox7FFFFFFF. If any value exceeding this limit is specified, the service call may not
operate correctly. If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in
which case the service call operates the same way as prcv_dtq. Furthermore, if specified as
tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which case the service call operates the
same way as rcv_dtq.
The task placed into a wait state by execution of the rcv_dtq or trcv_dtq service call is released from
the wait state in the following cases:
€ When the rcv_dtq, trcv_dtq, prcv_dtq, or iprcv_dtq service call is issued before the tmout
time elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.
€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain
unsatisfied
The error code returned in this case is E. TMOUT.
€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service
call issued from another task or a handler
The error code returned in this case is E_RLWAI.
If this service call is to be issued from task context, use rcv_dtq,trcv_dtq,prcv_dtq; if issued from
non-task context, use iprcv_dtq.

57

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

VP_INT data;

if (rev_dtg(ID_dtqg, &data) != E_RLWAI)
error (“forced wakeup\n”) ;

if(prev dtq(ID dtq, sdata) != E TMOUT)
error (“Timeout\n”) ;

if (trev_dtg(ID_dtg, &data, 10) != E_TMOUT)
error (“Timeout \n”);

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
task:
PUSHM AQ
trcv_dtqg #ID DTQ1,#TMO POL
PUSHM AQ
prcv_dtg #ID DTQ2
PUSHM AQ

rcv_dtqg #ID_DTQ2

58

ref _dtq Reference data queue status
iref_dtq Reference data queue status (handler only)

[[C Language API]]
ER ercd = ref dtg(ID dtgid, T RDTQ *pk rdtqg);
ER ercd = iref dtg(ID dtgid, T RDTQ *pk rdtqg);

@ Parameters
ID dtqgid ID number of the target data queue

T RDTQ *pk_rdtq Pointer to the packet to which data queue status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)
T RDTQ *pk_rdtq Pointer to the packet to which data queue status is returned

Contents of pk rdtg
typedef struct t rdtqgf{

ID stskid +0 2 Transmission waiting task ID
ID wtskid +2 2 Reception waiting task ID
UINT sdtgent +4 2 Data bytes contained in data queue
} T RDTQ;
[[Assembly language API 1]

.include mr308.inc
ref dtq DTQID, PK RDTQ
iref dtg DTQID, PK RDTQ

@ Parameters
DTQID ID number of the target data queue

PK_RDTQ Pointer to the packet to which data queue status is returned

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code

AO ID number of the target data queue

A1 Pointer to the packet to which data queue status is returned
[[Error code]

None

[[Functional description 1]

This service call returns various statuses of the data queue indicated by dtqid.

¢ stskid
Returned to stskid is the ID number of the task at the top of a transmission waiting queue (the
next task to be dequeued). If no tasks are kept waiting, TSK_NONE is returned.

¢ wtskid
Returned to wtskid is the ID number of the task at the top of a reception waiting queue (the next
task to be dequeued). If no tasks are kept waiting, TSK_NONE is returned.

¢ sdtqgcnt
Returned to sdtqcnt is the number of data bytes stored in the data queue area.

If this service call is to be issued from task context, use ref _dtq; if issued from non-task context, use

iref_dtq.

59

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RDTQ rdtg;
ER ercd;

ercd.: ref dtg(ID_DTQ1l, &rdtqg);

}

<<Example statement in assembly language>>

_ refdtq: .blkb 6
.include mr308.inc
.GLB task

task:

PUSHM AQ,Al
ref dtqg #ID DTQ1,# refdtqg

60

1.6. Synchronization & Communication Function (Mailbox)
Specifications of the mailbox function of MR308 are listed in Table 6. Specifications of the Mailbox

Function.
ltem No. | ltem Content
1 | Mailbox ID 1-255
2 | Mailbox priority 1-255

TA_TFIFO: Waiting tasks enqueued in order of FIFO
. . TA_TPRI: Waiting tasks enqueued in order of priority

3 | Mailbox attribute TA_MFIFO: Messages enqueued in order of FIFO

TA_MPRI: Messages enqueued in order of priority

Table 6. Specifications of the Mailbox Function

snd_mbx Send to mailbox
isnd_mbx Send to mailbox (handler only)
[[C Language API]]

ER ercd = snd mbx(ID mbxid, T MSG *pk msg);
ER ercd = isnd mbx(ID mbxid, T MSG *pk msg);

o Parameters
ID mbxid ID number of the mailbox to which transmitted

T_MSG *pk_msg Message to be transmitted

@ Return Parameters
ER ercd Terminated normally (E_OK)

[[Assembly language API]]

.include mr308.inc
sndimbx MBXID, PK MBX
isnd_mbx MBXID, PK_MBX

o Parameters
MBXID ID number of the mailbox to which transmitted

PK_MBX Message to be transmitted (address)

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 ID number of the mailbox to which transmitted
A1 Message to be transmitted (address)

[[Structure of the message packet 1]
<<Mailbox message header>>
typedef struct t msgf{

VP msghead +0 4 Kernel managed area
} T MSG;

<<Mailbox message header with priority included>>
typedef struct t msg{
T_MSG msgque +0 4 Message header
PRI msgpri +4 2 Message priority
} T _MSG;
[[Exror code 1]

None

61

[[Functional description]]
This service call sends the message indicated by pk_msg to the mailbox indicated by mbxid. T_MSG*
should be specified with a 32-bit address. If there is any task waiting to receive a message in the
target mailbox, the transmitted message is passed to the task at the top of the waiting queue, and the
task is released from WAITING state.
To send a message to a mailbox whose attribute is TA MFIFO, add a T_MSG structure at the
beginning of the message when creating it, as shown in the example below.
To send a message to a mailbox whose attribute is TA_MPRI, add a T_MSG_PRI structure at the
beginning of the message when creating it, as shown in the example below.
Messages should always be created in a RAM area regardless of whether its attribute is TA_MFIFO or
TA_MPRI.
The T_MSG area is used by the kernel, so that it cannot be rewritten after a message has been sent.
If this area is rewritten before the message is received after it was sent, operation of the service call
cannot be guaranteed.
If this service call is to be issued from task context, use snd_mbx; if issued from non-task context, use
isnd_mbx.

<<Example format of a message>>

typedef struct user msg{

T MSG t msg; /* T _MSG structure */

B data[l6]; /* User message data */
} USER MSG;

<<Example format of a message with priority included>>

typedef struct user msg({
T MSG PRI t msg; /* T MSG PRI structure */
B datal[l6]; /* User message data */

} USER_MSG;

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
typedef struct pri message

T MSG PRI msgheader;
char body [12] ;
} PRI MSG;

void task (void)
PRI_MSG msg;
msg.msgpri = 5;

snd_mbx (ID_msg, (T_MSG) &msg) ;

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
_g userMsg: .blkb 4 ; Header
.blkb 12 ; Body
task:
PUSHM AQ,Al

snd_mbx #ID MBX1,# g userMsg

62

rcv_mbx Receive from mailbox

prcv_mbx Receive from mailbox (polling)

iprcv_mbx Receive from mailbox (polling, handler only)
trcv_mbx Receive from mailbox (with timeout)

[[C Language API]]

ER ercd = rcv_mbx(ID mbxid, T MSG **ppk msg);

ER ercd = prcv_mbx(ID mbxid, T MSG **ppk msg);

ER ercd = iprcv mbx(ID mbxid, T MSG **ppk msg);

ER ercd = trcv _mbx(ID mbxid, T MSG **ppk msg, TMO tmout);

® Parameters

ID mbxid ID number of the mailbox from which to receive
TMO tmout Timeout value (for trcv_mbx)
T _MSG **ppk_msg Pointer to the beginning of the area in which received

message is stored

@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
T_MSG **ppk_msg Pointer to the beginning of the area in which received
message is stored

[[Assembly language API 1]

.include mr308.inc
rcv_mbx MBXID
prcv_mbx MBXID
iprcv_mbx MBXID
trcv_mbx MBXID, TMO

® Parameters
MBXID ID number of the mailbox from which to receive

TMO Timeout value (for trcv_mbx)
® Register contents after service call is issued

rcv_mbx,prcv_mbx,iprcv_mbx
Register name Content after service call is issued

RO Error code

R1 Received message (upper address)

R2 Received message (lower address)

A0 ID number of the mailbox from which to receive

trcv_mbx

Register name Content after service call is issued

RO Error code

R1 Received message (upper address)

R2 Received message (lower address)

R3 Timeout value(16 high-order bits)

A0 ID number of the mailbox from which to receive
[[Error code]I

E_RLWAI Forced release from waiting

E_TMOUT Polling failure or timeout or timed out

63

[[Functional description]]
This service call receives a message from the mailbox indicated by mbxid and stores the beginning
address of the received message in the area pointed to by ppk_msg. T_MSG* should be specified
with a 32-bit address. If data is present in the target mailbox, the data at the top of the mailbox is
received.
On the other hand, if rcv_mbx or trcv_mbx is issued for a mailbox that has no messages in it, the task
that issued the service call goes from RUNNING state to a message reception wait state, and is
enqueued in a message reception waiting queue. In that case, if the attribute of the specified mailbox
is TA_TFIFO, the task is enqueued in order of FIFO; if TA_TPRI, the task is enqueued in order of
priority. For prcv_mbx and iprcv_mbyx, the task returns immediately and responds to the call with the
error code E_TMOUT.
For the trcv_mbx service call, specify a wait time for tmout in ms units. The values specified for tmout
must be within Ox7FFFFFFF. If any value exceeding this limit is specified, the service call may not
operate correctly. If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in
which case the service call operates the same way as prcv_mbx. Furthermore, if specified as
tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which case the service call operates the
same way as rcv_mbx.
The task placed into WAITING state by execution of the rcv_mbx or trcv_mbx service call is released
from WAITING state in the following cases:
€ When the rcv_mbx, trcv_mbx, prcv_mbx, or iprcv_mbx service call is issued before the
tmout time elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.
€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain
unsatisfied
The error code returned in this case is E_ TMOUT.
€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service
call issued from another task or a handler
The error code returned in this case is E_RLWAI.
If this service call is to be issued from task context, use rcv_mbx,trcv_mbx,prcv_mbx; if issued from
non-task context, use iprcv_mbx.

64

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”

typedef struct fifo message

T MSG head;
char body [12] ;
} FIFO MSG;
void task()

FIFO_MSG *msg;

if (rev_mbx((T_MSG *)&msg, ID mbx) == E RLWAI)
error (“forced wakeup\n”) ;

if (prcv_mbx((T _MSG *)&msg, ID mbx) != E TMOUT)
error (“Timeout\n”) ;

if (trev_mbx((T _MSG *)&msg, ID mbx,10) != E TMOUT)
error (“Timeout\n”) ;

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task

task:
PUSHM R3,A0
trev_mbx #ID MBX1,#100
PUSHM R3,A0
rcv_mbx #ID MBX1
PUSHM R3,A0

prcv_mbx #ID_MBX1

65

ref_mbx Reference mailbox status
iref_mbx Reference mailbox status (handler only)

[[C Language API]]
ER ercd = ref mbx(ID mbxid, T RMBX *pk rmbx);
ER ercd = iref mbx(ID mbxid, T RMBX *pk rmbx);

@ Parameters
ID Mbxid ID number of the target mailbox

T_RMBX *pk_rmbx Pointer to the packet to which mailbox status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)
T _RMBX *pk_rmbx Pointer to the packet to which mailbox status is returned

Contents of pk rmbx
typedef struct t rmbx{

ID wtskid +0 2 Reception waiting task 1D
T MSG *pk_msg +4 4 Next message packet to be received
} T RMBX;
[[Assembly language API 1]

.include mr308.inc
ref mbx MBXID, PK RMBX
iref mbx MBXID, PK RMBX

@ Parameters
MBXID ID number of the target mailbox

PK_RMBX Pointer to the packet to which mailbox status is returned

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code

A0 ID number of the target mailbox

A1 Pointer to the packet to which mailbox status is returned
[[Error code]

None

[[Functional description 1]
This service call returns various statuses of the mailbox indicated by mbxid.
¢ wtskid

Returned to wtskid is the ID number of the task at the top of a reception waiting queue (the next

task to be dequeued). If no tasks are kept waiting, TSK_NONE is returned.
¢ ‘*pk_msg

Returned to *pk_msg is the beginning address of the next message to be received. If there are no
messages to be received next, NULL is returned. T_MSG* should be specified with a 32-bit

address.

If this service call is to be issued from task context, use ref_mbyx; if issued from non-task context, use

iref_mbx.

66

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RMBX rmbx;
ER ercd;

ercd = ref mbx(ID MBX1l, &rmbx);

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
_ refmbx: .blkb 6
task:

PUSHM A0,Al
ref_mbx #ID MBX1,# refmbx

67

1.7. Memory Pool Management Function (Fixed-size Memory Pool)
Specifications of the fixed-size memory pool function of MR308 are listed in Table 7. Specifications
of the Fixed-size memory pool Function.

The memory pool area to be acquired can be specified by a section name for each memory pool
during configuration.

ltem No. | ltem Content

1 | Fixed-size memory pool ID 1-255

2 | Number of fixed-size memory pools | 1-65535

3 | Size of fixed-size memory pool 4-65535
TA_TFIFO: Waiting tasks enqueued in order of

4 : FIFO

Supported atiributes TA_TPRI: Waiting tasks enqueued in order of

priority

5 | Specification of memory pool area | Area to be acquired specifiable by a section

Table 7. Specifications of the Fixed-size memory pool Function

get_mpf Aquire fixed-size memory block
pget_mpf Aquire fixed-size memory block (polling)
ipget_mpf Aquire fixed-size memory block (polling, handler
only)
tget_mpf Aquire fixed-size memory block (with timeout)
[[C Language API]]
ER ercd = get mpf(ID mpfid, VP *p blk);
ER ercd = pget mpf(ID mpfid, VP *p blk);
ER ercd = ipget mpf(ID mpfid, VP *p blk);
ER ercd = tget mpf(ID mpfid, VP *p blk,TMO tmout);
@ Parameters
ID mpfid ID number of the target fixed-size memory pool to be acquired
VP *p_blk Pointer to the beginning address of the acquired memory block
TMO tmout Timeout value(tget_mpf)
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
VP *p_blk Pointer to the beginning address of the acquired memory block
[[Assembly language API]]
.include mr308.inc
get mpf MPFID
pget mpf MPFID
ipget mpf MPFID
tget mpf MPFID,TMO
@ Parameters
MPFID ID number of the target fixed-size memory pool to be acquired

TMO Timeout value(tget_mpf)

68

o Register contents after service call is issued
get mpf,pget mpf,ipget mpf
Register name Content after service call is issued

RO Error code
R1 Beginning address of the acquired memory block (16 low-order bits)
R3 Beginning address of the acquired memory block (16 high-order bits)
AO ID number of the target fixed-size memory pool to be acquired
tget _mpf
Register name Content after service call is issued
RO Error code
R1 Beginning address of the acquired memory block (16 low-order bits)
R2 Timeout value(16 high-order bits)
R3 Beginning address of the acquired memory block (16 high-order bits)
A0 ID number of the target fixed-size memory pool to be acquired
[[Error code 1]
E_RLWAI Forced release from waiting
E_TMOUT Polling failure or timeout or timed out
EV_RST Released from WAITING state by clearing of the memory pool area

[[Functional description 1]
This service call acquires a memory block from the fixed-size memory pool indicated by mpfid and
stores the beginning address of the acquired memory block in the variable p_blk. The content of the
acquired memory block is indeterminate.
If the fixed-size memory pool indicated by mpfid has no memory blocks in it and the used service call
is tget_mpf or get_mpf, the task that issued it goes to a memory block wait state and is enqueued in a
memory block waiting queue. In that case, if the attribute of the specified fixed-size memory pool is
TA_TFIFO, the task is enqueued in order of FIFO; if TA_TPRI, the task is enqueued in order of priority.
If the issued service call was pget_mpf or ipget_mpf, the task returns immediately and responds to the
call with the error code E_ TMOUT.
For the tget_mpf service call, specify a wait time for tmout in ms units. The values specified for tmout
must be within (Ox7FFFFFFF — time tick). If any value exceeding this limit is specified, the service call
may not operate correctly. If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout
value, in which case the service call operates the same way as pget_mpf. Furthermore, if specified as
tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which case the service call operates the
same way as get_mpf.
The task placed into WAITING state by execution of the get_ mpf or tget_mpf service call is released
from WAITING state in the following cases:
€ When the rel_mpf or irel_mpf service call is issued before the tmout time elapses, with
task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.
€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain
unsatisfied
The error code returned in this case is E. TMOUT.
€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service
call issued from another task or a handler
The error code returned in this case is E_RLWAI.
€ When the target memory pool being waited for is removed by the vrst_mpf service call
issued from another task
The error code returned in this case is EV_RST.
The value of the memory block acquired by this service call is indeterminate because it is not
initialized.
If this service call is to be issued from task context, use get_mpf,pget_mpf,tget_mpf; if issued from
non-task context, use ipget_mpf.

69

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
VP p_blk;
void task()

if (get _mpf (ID mpf ,&p blk) != E OK) {
error (“Not enough memory\n”) ;

}

i (pget_mpkaD_mpf ,&p _blk) != E OK){
error (“Not enough memory\n”) ;

}

if (tget mpf (ID mpf ,&p blk, 10) != E OK)
error (“Not enough memory\n”) ;

}

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
task:

PUSHM AQ

get_mpf #ID_MPF1

PUSHM AQ

pget mpf #ID MPF1

PUSHM A0
tget_mpf #ID_MPF1,#200

70

rel_mpf Release fixed-size memory block
irel_mpf Release fixed-size memory block (handler only)

[[C Language API]]
ER ercd = rel mpf(ID mpfid, VP blk);
ER ercd = irel mpf(ID mpfid, VP blk);

@ Parameters
ID mpfid ID number of the fixed-size memory pool to be released

VP blk Beginning address of the memory block to be returned

@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

.include mr308.inc
rel_mpf MPFID, BLK
irel mpf MPFID,BLK

@ Parameters
MPFID ID number of the fixed-size memory pool to be released

BLK Beginning address of the memory block to be returned

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R1 Beginning address of the memory block to be returned (16 low-order bits)
R3 Beginning address of the memory block to be returned (16 high-order bits)
A0 ID number of the fixed-size memory pool to be released
[[Error code]I
None

[[Functional description]

This service call releases a memory block whose beginning address is indicated by blk. The beginning
address of the memory block to be released that is specified here should always be that of the

memory block acquired by get_mpf, tget_mpf, pget_mpf, or ipget_mpf.

If tasks are enqueued in a waiting queue for the target memory pool, the task at the top of the waiting
queue is dequeued and linked to a ready queue, and is assigned a memory block. At this time, the
task changes state from a memory block wait state to RUNNING or READY state. This service call
does not check the content of blk, so that if the address stored in blk is incorrect, the service call may

not operate correctly.

If this service call is to be issued from task context, use rel_mpf; if issued from non-task context, use

irel_mpf.

71

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

VP p blf;
if (get_mpf (ID mpfl,&p blf) != E OK)
error (“Not enough memory \n”) ;

rel_mpf(ID;mpfl,p_blf);

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
_g_blk: .blkb 4
task:
PUSHM AQ
get_mpf #ID_MPF1
MOV . L R3R1, g blk
PUSHM AQ

rel mpf #ID_MPF1l,_g blk

72

ref_mpf Reference fixed-size memory pool status
iref_mpf Reference fixed-size memory pool status
(handler only)

[[C Language API]]
ER ercd = ref mpf(ID mpfid, T RMPF *pk rmpf);
ER ercd = iref mpf(ID mpfid, T RMPF *pk rmpf);

@ Parameters
ID mpfid Task ID waiting for memory block to be acquired

T_RMPF *pk_rmpf Pointer to the packet to which fixed-size memory pool status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)
T RMPF *pk_rmpf Pointer to the packet to which fixed-size memory pool status is returned

Contents of pk rmpf
typedef struct t rmpf{

ID wtskid +0 2 Task ID waiting for memory block to be acquired
UINT fblkent +2 2 Number of free memory blocks
} T RMPF;
[[Assembly language API 1]

.include mr308.inc
ref mpf MPFID,PK RMPF
iref mpf MPFID,PK RMPF

@ Parameters
MPFID Task ID waiting for memory block to be acquired

PK_RMPF Pointer to the packet to which fixed-size memory pool status is returned

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 Task ID waiting for memory block to be acquired
A1 Pointer to the packet to which fixed-size memory pool status is returned
[[Error code]
None

[[Functional description 1]

This service call returns various statuses of the message buffer indicated by mpfid.

¢ witskid
Returned to wtskid is the ID number of the task at the top of a memory block waiting queue (the
first queued task). If no tasks are kept waiting, TSK_NONE is returned.

¢ fblkent
The number of free memory blocks in the specified memory pool is returned.

If this service call is to be issued from task context, use rel_mpf; if issued from non-task context, use

irel_mpf.

73

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RMPF rmpf;
ER ercd;

ercd = ref mpf(ID MPFl, &rmpf);

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task

_ refmpf: .blkb 4
task:

PUSHM A0,Al
ref_mpf #ID MPF1,# refmpf

74

1.8. Memory Pool Management Function (Variable-size Memory Pool)
Specifications of the Variable-size Memory pool function of MR308 are listed in Table 8. Specifications
of the variable-size memory Pool Function.

The memory pool area to be acquired can be specified by a section name for each memory pool
during configuration.

ltem No. | ltem Content
1 | Variable-size memory pool ID 1-255
2 | Size of Variable-size Memory pool 16-524288
3 Maxmum number of memory blocks to be 1-65520
acquired

When memory is insufficient, task-waiting

4 | Supported attributes APIs are not supported.

5 | Specification of memory pool area Area to be acquired specifiable by a section

Table 8. Specifications of the variable-size memory Pool Function

pget_mpl Aquire variable-size memory block (polling)

[[C Language API]]

ER ercd = pget mpl(ID mplid, UINT blksz, VP *p blk);

o Parameters

ID mplid ID number of the target Variable-size Memory pool to be acquired
UINT blksz Memory size to be acquired (in bytes)
VP *p_blk Pointer to the beginning address of the acquired variable memory

® Return Parameters

ER ercd Terminated normally (E_OK) or error code
VP *p_blk Pointer to the beginning address of the acquired variable memory
[[Assembly language API 1]

.include mr308.inc
pget mpl MPLID,BLKSZ

® Parameters
MPLID ID number of the target Variable-size Memory pool to be acquired

BLKSZ Memory size to be acquired (in bytes)

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R1 Memory size to be acquired (16 low-order bits)
R3 Memory size to be acquired (16 high-order bits)
AO ID number of the target Variable-size Memory pool to be acquired
[[Exror code 1]
E_TMOUT No memory block

75

[[Functional description]]
This service call acquires a memory block from the variable-size memory pool indicated by mplid and
stores the beginning address of the acquired memory block in the variable p_blk. The content of the
acquired memory block is indeterminate.
If the specified variable-size memory pool has no memory blocks in it, the task returns immediately
and responds to the call with the error code E_ TMOUT.
The value of the memory block acquired by this service call is indeterminate because it is not
initialized.
This service call can be issued only from task context. It cannot be issued from non-task context.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
VP p_blk;
void task()

if (pget mpl(ID mpl , 200, &p_blk) != E OK){
error (“Not enough memory\n”) ;
}
}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

PUSHM AQ
pget_mpl #ID MPL1,#200

76

rel_mpl Release variable-size memory block

[[C Language API]]

ER ercd = rel mpl(ID mplid, VP blk);

@ Parameters
ID mplid ID number of Variable-size Memory pool of the memory block to be released

VP Blk Beginning address of the memory block to be returned

@ Return Parameters
ER ercd Terminated normally (E_OK) or error code

[[Assembly language API 1]

.include mr308.inc
rel mpl MPLID, BLK

@ Parameters
MPLID ID number of Variable-size Memory pool of the memory block to be released

BLK Beginning address of the memory block to be returned

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R1 Beginning address of the memory block to be returned (16 low-order bits)
R3 Beginning address of the memory block to be returned (16 high-order bits)
AO ID number of Variable-size Memory pool of the memory block to be released
[[Error code 1]
None

[[Functional description 1]
This service call releases a memory block whose beginning address is indicated by blk. The beginning
address of the memory block to be released that is specified here should always be that of the
memory block acquired by pget_mpl.
This service call does not check the content of blk, so that if the address stored in blk is incorrect, the
service call may not operate correctly.

77

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

VP p blk;
if (get mpl(ID mpll, 200, &p blk) != E OK)
error (“Not enough memory \n”) ;

rel_mpl(ID;mpl,p_blk);

<<Example statement in assembly language>>
.include mr308.inc

.GLB task

g blk: .blkb 4

task:
PUSHM A0
get_mpl #ID MPL1,#200
MOV.L ' R3R1, g blk
PUSHM A0

rel mpf #ID MPL1l, g blk

78

ref_mpl Reference variable-size memory pool status
iref_mpl Reference variable-size memory pool status
(handler only)

[[C Language API]]
ER ercd = ref mpl(ID mplid, T RMPL *pk rmpl);
ER ercd = iref mpl(ID mplid, T RMPL *pk rmpl);

@ Parameters
ID mplid ID number of the target variable-size memory pool

T_RMPL *pk_rmpl Pointer to the packet to which variable-size memory pool status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)
T RMPL *pk_rmpl Pointer to the packet to which variable-size memory pool status is returned

Contents of pk rmpl
typedef struct t rmpl{

ID wtskid +0 2 Task ID waiting for memory block to be acquired (unused)
SIZE fmplsz +4 4 Free memory size (in bytes)
UINT fblksz +8 2 Maximum size of memory that can be acquired
immediately (in bytes)
} T RMPL;
[[Assembly language API]]

.include mr308.inc
ref mpl MPLID,PK RMPL
iref mpl MPLID,PK RMPL

@ Parameters
MPLID ID number of the target variable-size memory pool

PK_RMPL Pointer to the packet to which variable-size memory pool status is returned

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
AOQ ID number of the target variable-size memory pool
A1 Pointer to the packet to which variable-size memory pool status is returned
[[Error code]
None

[[Functional description 1]
This service call returns various statuses of the message buffer indicated by mplid.
¢ wtskid
Unused.
¢ fmplsz
A free memory size is returned.
¢ fblksz
The maximum size of memory that can be acquired immediately is returned.
If this service call is to be issued from task context, use ref_mpl; if issued from non-task context, use
iref_mpl.

79

[[Example program statement 1]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel id.h”
void task()

T RMPL rmpl;
ER ercd;

ercd': ref mpl(ID MPL1, &rmpl);

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task

_ refmpl: .blkb 8
task:

PUSHM AQ,Al
ref mpl #ID MPL1, refmpl

80

1.9. Time Management Function
Specifications of the time management function of MR308 are listed in Table 9. .

ltem No. | ltem Content
1 | System time value Unsigned 48 bits
2 | Unit of system time value 1[ms]
3 | System time updating cycle User-specified time tick updating time [ms]
4 Initial value of system time (at initial 000000000000H
startup)
Table 9. Specifications of the Time Management Function
set_tim Set system time
iset_tim Set system time (handler only)
[[C Language API]l

ER ercd = set tim(SYSTIM *p systim);
ER ercd = iset tim(SYSTIM *p systim);

@ Parameters
SYSTIM *p_systim Pointer to the packet that indicates the system time to be set

Contents of p systim
typedef struct t systim {

UH utime 0 2 (16 high-order bits)
uw Itime +4 4 (32 low-order bits)
} SYSTIM;

@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

.include mr308.inc
set _tim PK TIM
iset tim PK TIM

@ Parameters
PK_TIM Pointer to the packet that indicates the system time to be set

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 Pointer to the packet that indicates the system time to be set
[[Error code]
None

[[Functional description 1]
This service call updates the current value of the system time to the value indicated by p_systim. The
time specified in p_systim is expressed in ms units, and not by the number of time ticks.
The values specified for p_systim must be within Ox7FFF: FFFFFFFF. If any value exceeding this limit
is specified, the service call may not operate correctly.

If this service call is to be issued from task context, use set_tim; if issued from non-task context, use
iset_tim.

81

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

SYSTIME time; /* Time data storing variable */
time.utime = 0; /* Sets upper time data */
time.ltime = 0; /* Sets lower time data */
set_tim(&time); /* Sets the system time */

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task
_g_systim:
.WORD 1111H
.LWORD 22223333H
task:

PUSHM AQ
set_tim # g_systim

82

get_tim Reference system time
iget_tim Reference system time (handler only)

[[C Language API]]
ER ercd = get tim(SYSTIM *p systim);
ER ercd = iget tim(SYSTIM *p systim);

@ Parameters
SYSTIM *p_systim Pointer to the packet to which current system time is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)
SYSTIM *p_systim Pointer to the packet to which current system time is returned

Contents of p systim
typedef struct t systim {

UH utime 0 2 (16 high-order bits)
uw Itime +4 4 (32 low-order bits)
} SYSTIM;
[[Assembly language API 1]

.include mr308.inc
get tim PK TIM
iget tim PK TIM

® Parameters
PK_TIM Pointer to the packet to which current system time is returned

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
AO Pointer to the packet to which current system time is returned
[[Error code]
None

[[Functional description 1]
This service call stores the current value of the system time in p_systim.

If this service call is to be issued from task context, use get_tim; if issued from non-task context, use
iget_tim.

83

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

SYSTIME time; /* Time data storing variable */
get_tim(&time); /* Refers to the system time */

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
_g_systim: .blkb 6
task:

PUS'HM AQ

get_tim #_g systim

84

isig_tim Supply a time tick

[[Functional description]]
This service call updates the system time.
The isig_tim is automatically started every tick_time interval(ms) if the system clock is defined by the

configuration file. The application cannot call this function because it is not implementing as service
call.

When a time tick is supplied, the kernel is processed as follows:

(1) Updates the system time

(2) Starts an alarm handler

(3) Starts a cyclic handler

(4) Processes the timeout processing of the task put on WAITING state by service call with timeout
such as tslp_tsk.

85

1.10. Time Management Function (Cyclic Handler)
Specifications of the cyclic handler function of MR308 are listed in Table 10. Specifications of the
Cyclic Handler Function. The cyclic handler description languages in item No. 4 are those specified in
the GUI configurator. They are not output to a configuration file, nor are the MR308 kernel concerned

with them.
ltem No. | ltem Content
1| Cyclic handler ID 1-255
2 | Activation cycle O-7fffffffims]
3 | Activation phase O-7fffffffims]
4 | Extended information 32 bits

TA_HLNG: Handlers written in high-level language
TA_ASM: Handlers written in assembly language
TA_STA: Starts operation of cyclic handler
TA_PHS: Saves activation phase

4 | Cyclic handler attribute

Table 10. Specifications of the Cyclic Handler Function

sta_cyc Start cyclic handler operation
ista_cyc Start cyclic handler operation (handler only)
[[C Language API]]

ER ercd = sta cyc(ID cycid);
ER ercd = ista cyc(ID cycid);

@ Parameters
ID cycid ID number of the cyclic handler to be operated

@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]
.include mr308.inc
sta cyc CYCNO
ista _cyc CYCNO

® Parameters
CYCNO ID number of the cyclic handler to be operated

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code

A0 ID number of the cyclic handler to be operated
[[Error code]

None

[[Functional description 1]
This service call places the cyclic handler indicated by cycid into an operational state. If the cyclic
handler attribute of TA_PHS is not specified, the cyclic handler is started every time the activate cycle
elapses, beginning with the time at which this service call was invoked.
If while TA_PHS is not specified this service call is issued to a cyclic handler already in an operational
state, it sets the time at which the cyclic handler is to start next.
If while TA_PHS is specified this service call is issued to a cyclic handler already in an operational
state, it does not set the startup time.
If this service call is to be issued from task context, use sta_cyc; if issued from non-task context, use
ista_cyc.

86

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

sta_cyc (ID cycl);

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

PUSHM AQ
sta_cyc #ID_CYC1

87

stp_cyc Stops cyclic handler operation
istp_cyc Stops cyclic handler operation (handler only)

[[C Language API]]

ER ercd = stp cyc(ID cycid);
ER ercd = istp cyc(ID cycid);

o Parameters

ID cycid ID number of the cyclic handler to be stopped
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API]]

.include mr308.inc
stp _cyc CYCNO
istp cyc CYCNO

@ Parameters
CYCNO ID number of the cyclic handler to be stopped

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code

AO ID number of the cyclic handler to be stopped
[[Error code]

None

[[Functional description 1]
This service call places the cyclic handler indicated by cycid into a non-operational state.
If this service call is to be issued from task context, use stp_cyc; if issued from non-task context, use
istp_cyc.

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()

stp_éyc (ID_cycl);

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

PUSHM AQ
stp_cyc #ID_CYC1

88

ref_cyc Reference cyclic handler status
iref_cyc Reference cyclic handler status (handler only)

[[C Language API]]
ER ercd = ref cyc(ID cycid, T RCYC *pk rcyc);
ER ercd = iref cyc(ID cycid, T RCYC *pk rcyc);

@ Parameters
ID cycid ID number of the target cyclic handler

T _RCYC *pk_rcyc Pointer to the packet to which cyclic handler status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)
T RCYC *pk_rcyc Pointer to the packet to which cyclic handler status is returned

Contents of pk rcyc
typedef struct t rcyc{

STAT cycstat +0 2 Operating status of cyclic handler

RELTIM lefttim +2 4 Left time before cyclic handler starts up
} T RCYC;
[[Assembly language API 1]

.include mr308.inc
ref cyc ID,PK RCYC
iref cyc ID,PK RCYC

@ Parameters
CYCNO ID number of the target cyclic handler

PK_RCYC Pointer to the packet to which cyclic handler status is returned

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code

A0 ID number of the target cyclic handler

A1 Pointer to the packet to which cyclic handler status is returned
[[Error code]

None

[[Functional description 1]
This service call returns various statuses of the cyclic handler indicated by cycid.

€ cycstat
The status of the target cyclic handler is returned.
*TCYC_STA Cyclic handler is an operational state.
*TCYC_STP Cyclic handler is a non-operational state.
¢ lefttim

The remaining time before the target cyclic handler will start next is returned. This time is
expressed in ms units. If the target cyclic handler is non-operational state, the returned value is
indeterminate.
If this service call is to be issued from task context, use ref cyc; if issued from non-task context, use
iref_cyc.

89

[[Example program statement 1]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel id.h”
void task()

T RCYC rcyc;
ER ercd;

ercd = ref cyc(ID CYC1l, &rcyc);

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task

_ refcyc: .blkb 6
task:

PUSHM AQ,Al
ref cyc #ID CYC1,# refcyc

90

1.11. Time Management Function (Alarm Handler)
Specifications of the alarm handler function of MR308 are listed in Table 11. Specifications of the
Alarm Handler Function. The alarm handler description languages in item No. 4 are those specified in
the GUI configurator. They are not output to a configuration file, nor are the MR308 kernel concerned

with them.
ltem No. | ltem Content
1| Alarm handler ID 1-255
2 | Activation time O-7fffffff [ms]
3 | Extended information 32 bits
4 . TA_HLNG: Handlers written in high-level language
Alarm hander attribute TA_ASM: Handlers written in assembly language

Table 11. Specifications of the Alarm Handler Function

sta_alm Start alarm handler operation
ista_alm Start alarm handler operation (handler only)
[[C Language API]]

ER ercd = sta alm(ID almid, RELTIM almtim);
ER ercd = ista alm(ID almid, RELTIM almtim);

@ Parameters
ID almid ID number of the alarm handler to be operated

RELTIM almtim Alarm handler startup time (relative time)

@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

.include mr308.inc
Sta_alm ALMID,ALMTIM
ista_alm ALMID,ALMTIM

@ Parameters
ALMID ID number of the alarm handler to be operated

ALMTIM Alarm handler startup time (relative time)

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R1 Alarm handler startup time (relative time) (16 low-order bits)
R3 Alarm handler startup time (relative time) (16 high-order bits)
A0 ID number of the alarm handler to be operated

[[Exror code 1]
None

[[Functional description]]
This service call sets the activation time of the alarm handler indicated by almid as a relative time of
day after the lapse of the time specified by almtim from the time at which it is invoked, and places the
alarm handler into an operational state.
If an already operating alarm handler is specified, the previously set activation time is cleared and
updated to a new activation time. If almtim = 0 is specified, the alarm handler starts at the next time
tick. The values specified for almtim must be within (Ox7FFFFFFF — time tick). If any value exceeding
this limit is specified, the service call may not operate correctly. If O is specified for almtim , the alarm
handler is started at the next time tick.
If this service call is to be issued from task context, use sta_alm; if issued from non-task context, use
ista_alm.

91

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

sta_alm (ID alml,100);

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

PUSHM AQ
sta_alm #ID_ ALMI1,#100

92

stp_alm Stop alarm handler operation
istp_alm Stop alarm handler operation (handler only)

[[C Language API]]
ER ercd = stp alm(ID almid);
ER ercd = istp alm(ID almid);

@ Parameters
ID almid ID number of the alarm handler to be stopped

@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API]]
.include mr308.inc
stp _alm ALMID
istp_alm ALMID

@ Parameters
ALMID ID number of the alarm handler to be stopped

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
AOQ ID number of the alarm handler to be stopped
[[Error code]
None

[[Functional description]
This service call places the alarm handler indicated by almid into a non-operational state.
If this service call is to be issued from task context, use stp_alm; if issued from non-task context, use
istp_alm.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()

stp_alm (ID alml);

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

PUSHM AQ
stp_alm #ID ALM1

93

ref_alm Reference alarm handler status
iref_alm Reference alarm handler status (handler only)

[[C Language API]]
ER ercd = ref alm(ID almid, T RALM *pk ralm);
ER ercd = iref alm(ID almid, T RALM *pk ralm);

@ Parameters
ID almid ID number of the target alarm handler

T_RALM *pk_ralm Pointer to the packet to which alarm handler status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)
T_RALM *pk_ralm Pointer to the packet to which alarm handler status is returned

Contents of pk ralm
typedef struct t ralm{

STAT almstat ~ +0 2 Operating status of alarm handler
RELTIM lefttim +2 4 This service call returns various statuses of the alarm
handler indicat
} T RALM;
[[Assembly language API 1]

.include mr308.inc
ref alm ALMID,PK RALM
iref alm ALMID,PK RALM

@ Parameters
ALMID ID number of the target alarm handler

PK_RALM Pointer to the packet to which alarm handler status is returned

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
AO ID number of the target alarm handler
A1 Pointer to the packet to which alarm handler status is returned
[[Error code]
None

[[Functional description 1]
This service call returns various statuses of the alarm handler indicated by almid.

¢ almstat
The status of the target alarm handler is returned.
*TALM_STA Alarm handler is an operational state.
*TALM_STP Alarm handler is a non-operational state.
¢ lefttim

The remaining time before the target alarm handler will start next is returned. This time is
expressed in ms units. If the target alarm handler is a non-operational state, the returned value is
indeterminate.
If this service call is to be issued from task context, use ref_alm; if issued from non-task context, use
iref_alm.

94

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RALM ralm;
ER ercd;

ercd = ref _alm(ID ALM1l, &ralm);

<<Example statement in assembly language>>
.include mr308.inc

.GLB task

_ refalm: .blkb 6
task:

PUSHM A0,Al
ref_alm #ID ALM1,# refalm

95

1.12. System Status Management Function

rot_rdq Rotate task precedence
irot_rdq Rotate task precedence (handler only)
[[C Language API]]

ER ercd = rot rdg(PRI tskpri);
ER ercd = irot rdg(PRI tskpri);

@ Parameters
PRI tskpri Task priority to be rotated

@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]
.include mr308.inc
rot rdg TSKPRI
irot rdg TSKPRI

@ Parameters
TSKPRI Task priority to be rotated

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R3 Task priority to be rotated
[[Error code 1]
None

96

[[Functional description]]
This service call rotates the ready queue whose priority is indicated by tskpri. In other words, it
relocates the task enqueued at the top of the ready queue of the specified priority by linking it to
behind the tail of the ready queue, thereby switching over the executed tasks that have the same
priority. Figure 1-1 depicts the manner of how this is performed.

Proprity 1 TCB
Priority 2 TCB TCB
Priority n TCB TCB TCB [-->

Moved to behind the tail of the queue

Figure 1-1. Manipulation of the ready queue by the rot_rdq service call

By issuing this service call at given intervals, it is possible to perform round robin scheduling. If
tskpri=TPRI_SELF is specified when using the rot_rdq service call, the ready queue whose priority is
that of the issuing task is rotated. TPRI_SELF cannot be specified in the irot_rdq service call.
TPRI_SELF cannot be specified by irot_rdq service call. However, an error is not returned even if it is
specified.

If the priority of the issuing task itself is specified in this service call, the issuing task is relocated to
behind the tail of the ready queue in which it is enqueued. Note that if the ready queue of the specified
priority has no tasks in it, no operation is performed.

If this service call is to be issued from task context, use rot_rdgq; if issued from non-task context, use
irot_rdq.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

rot_qu(2);
}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
task:
PUSHM R3

rot_rdg #2

97

get_tid Reference task ID in the RUNNING state
iget_tid Reference task ID in the RUNNING state
(handler only)

[[C Language API]]
ER ercd = get tid(ID *p_ tskid);
ER ercd = iget tid(ID *p tskid);

@ Parameters
ID *p_tskid Pointer to task ID

@ Return Parameters

ER ercd Terminated normally (E_OK)
ID *p_tskid Pointer to task ID
[[Assembly language API 1]
.include mr308.inc
get tid
iget tid

o Parameters
None

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
AO Acquired task ID
[[Error code 1]
None

[[Functional description 1]
This service call returns the task ID currently in RUNNING state to the area pointed to by p_tskid. If
this service call is issued from a task, the ID number of the issuing task is returned. If this service call
is issued from non-task context, the task ID being executed at that point in time is returned. If there are
no tasks currently in an executing state, TSK_NONE is returned.
If this service call is to be issued from task context, use get_tid; if issued from non-task context, use
iget_tid.
[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>

#include “kernel id.h”
void task()

ID tskid;
get_tid(stskid) ;

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
task:
PUSHM A0

get_tid

98

loc_cpu Lock the CPU
iloc_cpu Lock the CPU (handler only)

[[C Language API]]

ER ercd = loc_cpu();
ER ercd = iloc_cpul();

o Parameters
None

@ Return Parameters
ER ercd Terminated normally (E_OK)

[[Assembly language API 1]

.include mr308.inc
loc_cpu
iloc_cpu

® Parameters

None

® Register contents after service call is issued

Register name Content after service call is issued
RO Error code

[[Error code]

None

[[Functional description 1]

This service call places the system into a CPU locked state, thereby disabling interrupts and task
dispatches. The features of a CPU locked state are outlined below.

(1) No task scheduling is performed during a CPU locked state.
(2) No external interrupts are accepted unless their priority levels are higher than the kernel interrupt
mask level defined in the configurator.
(3) Only the following service calls can be invoked from a CPU locked state. If any other service
calls are invoked, operation of the service call cannot be guaranteed.
* ext_tsk
*loc_cpu, iloc_cpu
*unl_cpu, iunl_cpu
* sns_ctx
*sns_loc
* sns_dsp
*sns_dpn

The system is freed from a CPU locked state by one of the following operations.

(a) Invocation of the unl_cpu or iunl_cpu service call
(b) Invocation of the ext_tsk service call

Transitions between CPU locked and CPU unlocked states occur only when the loc_cpu, iloc_cpu,
unl_cpu, iunl_cpu, or ext_tsk service call is invoked. The system must always be in a CPU unlocked
state when the interrupt handler or the time event handler is terminated. If either handler terminates
while the system is in a CPU locked state, handler operation cannot be guaranteed. Note that the
system is always in a CPU unlocked state when these handlers start.

Invoking this service call again while the system is already in a CPU locked state does not cause an
error, in which case task queuing is not performed, however.

If this service call is to be issued from task context, use loc_cpu; if issued from non-task context, use
iloc_cpu.

99

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

lac_cpu();

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

loc;cpu

- 100 -

unl_cpu Unlock the CPU
iunl_cpu Unlock the CPU (handler only)
[[C Language API]]

ER ercd = unl cpu();
ER ercd = iunl cpu();

o Parameters
None

@ Return Parameters
ER ercd Terminated normally (E_OK)

[[Assembly language API 1]
.include mr308.inc
unl cpu
iunl cpu

® Parameters
None

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
[[Error code 1]

None

[[Functional description]]
This service call frees the system from a CPU locked state that was set by the loc_cpu or iloc_cpu
service call. If the unl_cpu service call is issued from a dispatching enabled state, task scheduling is
performed. If the system was put into a CPU locked state by invoking iloc_cpu within an interrupt
handler, the system must always be placed out of a CPU locked state by invoking iunl_cpu before it
returns from the interrupt handler.
The CPU locked state and the dispatching disabled state are managed independently of each other.
Therefore, the system cannot be freed from a dispatching disabled state by the unl_cpu or iunl_cpu
service call unless the ena_dsp service call is used.
If this service call is to be issued from task context, use unl_cpu; if issued from non-task context, use
iunl_cpu.
[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>

#include “kernel_id.h”
void task ()

uﬂl_cpu();

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

unl_cpu

-101 -

dis_dsp Disable dispatching

[[C Language API]]

ER ercd = dis dsp();

@ Parameters
None

® Return Parameters
ER ercd Terminated normally (E OK)

[[Assembly language API 1]
.include mr308.inc
dis dsp

o Parameters
None

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
[[Error code 1]

None

[[Functional description 1]
This service call places the system into a dispatching disabled state. The features of a dispatching
disabled state are outlined below.

(1) Since task scheduling is not performed anymore, no tasks other than the issuing task itself will be
placed into RUNNING state.

(2) Interrupts are accepted.

(3) No service calls can be invoked that will place tasks into WAITING state.

If one of the following operations is performed during a dispatching disabled state, the system status
returns to a task execution state.

(a) Invocation of the ena_dsp service call
(b) Invocation of the ext_tsk service call

Transitions between dispatching disabled and dispatching enabled states occur only when the dis_dsp,
ena_dsp, or ext_tsk service call is invoked.

Invoking this service call again while the system is already in a dispatching disabled state does not
cause an error, in which case task queuing is not performed, however.

This service call can be issued only from task context. It cannot be issued from non-task context.

-102 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()

dfs_dsp();

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

dis;dsp

- 103 -

ena_dsp Enables dispatching

[[C Language API]]

ER ercd = ena dsp();

@ Parameters
None

@ Return Parameters
ER ercd Terminated normally (E_OK)

[[Assembly language API 1]

.include mr308.inc
ena_dsp

® Parameters
None

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
[[Error code 1]

None

[[Functional description]]
This service call frees the system from a dispatching disabled state that was set by the dis_dsp
service call. As a result, task scheduling is resumed when the system has entered a task execution
state.
Invoking this service call from a task execution state does not cause an error, in which case task
queuing is not performed, however.
This service call can be issued only from task context. It cannot be issued from non-task context.
[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>

#include “kernel_id.h”
void task()

eﬂa_dsp();

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

ena_dsp

-104 -

sns_ctx Reference context

[[C Language API]]

BOOL state = sns ctx();

@ Parameters
None

® Return Parameters
BOOL state TRUE: Non-task context
FALSE: Task context

[[Assembly language API 1]
.include mr308.1inc
sns_ctx

o Parameters
None

o Register contents after service call is issued
Register name Content after service call is issued

RO TRUE:Non-Task context
FALSE: Task context

[[Error code]

None

[[Functional description]]
This service call returns TRUE when it is invoked from non-task context, or returns FALSE when
invoked from task context. This service call can also be invoked from a CPU locked state.
[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>

#include “kernel id.h”
void task()

BOOL stat;

stat = sns_ctx();

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

sns_ctx

- 105 -

sns_loc Reference CPU state

[[C Language API]]

BOOL state = sns loc();

@ Parameters
None

® Return Parameters
BOOL state TRUE: CPU locked state
FALSE: CPU unlocked state

[[Assembly language API 1]

.include mr308.inc
sns_loc

o Parameters
None

o Register contents after service call is issued
Register name Content after service call is issued

RO TRUE: CPU locked state
FALSE:CPUCPU unlocked state

[[Error code]

None

[[Functional description 1]
This service call returns TRUE when the system is in a CPU locked state, or returns FALSE when the
system is in a CPU unlocked state. This service call can also be invoked from a CPU locked state.
[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>

#include “kernel id.h”
void task()

BOOL stat;
stat = sns_loc();

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

sns_1loc

- 106 -

sns_dsp Reference dispatching state

[[C Language API]]

BOOL state = sns dsp();

@ Parameters
None

@ Return Parameters
BOOL state TRUE: Dispatching disabled state
FALSE: Dispatching enabled state

[[Assembly language API 1]
.include mr308.1inc
sns_dsp

o Parameters
None

o Register contents after service call is issued
Register name Content after service call is issued

RO TRUE: Dispatching disabled state
FALSE: Dispatching enabled state

[[Error code]

None

[[Functional description]]
This service call returns TRUE when the system is in a dispatching disabled state, or returns FALSE
when the system is in a dispatching enabled state. This service call can also be invoked from a CPU
locked state.
[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>

#include “kernel id.h”
void task()

BOOL stat;
stat = sns dsp();

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

sns_dsp

- 107 -

shns_dpn Reference dispatching pending state

[[C Language API]]

BOOL state = sns dpn();

@ Parameters
None

@ Return Parameters
BOOL state TRUE: Dispatching pending state
FALSE: Not dispatching pending state
[[Assembly language API 1]
.include mr308.inc
sns_dpn

o Parameters
None

o Register contents after service call is issued
Register name Content after service call is issued

RO TRUE: Dispatching pending state
FALSE: Not dispatching pending state

[[Error code]

None

[[Functional description]]
This service call returns TRUE when the system is in a dispatching pending state, or returns FALSE
when the system is not in a dispatching pending state. More specifically, FALSE is returned when all
of the following conditions are met; otherwise, TRUE is returned.

(1) The system is not in a dispatching pending state.
(2) The system is not in a CPU locked state.
(3) The object made pending is a task.

This service call can also be invoked from a CPU locked state. It returns TRUE when the system is in
a dispatching disabled state, or returns FALSE when the system is in a dispatching enabled state.
[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()

BOOL stat;
stat = sns dpn() ;

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

sns_dpn

- 108 -

1.13. Interrupt Management Function

ret_int Returns from an interrupt handler
(when written in assembly language)

[[C Language API]]
This service call cannot be written in C Ianguage.6
[[Assembly language API 1]
.include mr308.inc
ret int
B Parameters
None
[[Error code 1]

Not return to the interrupt handler that issued this service call.

B Functional description
This service call performs the processing necessary to return from an interrupt handler. Depending on
return processing, it activates the scheduler to switch tasks from one to another.
If this service call is executed in an interrupt handler, task switching does not occur, and task switching
is postponed until the interrupt handler terminates.
However, if the ret_int service call is issued from an interrupt handler that was invoked from an
interrupt that occurred within another interrupt, the scheduler is not activated. The scheduler is
activated for interrupts from a task only.
When writing this service call in assembly language, be aware that the service call cannot be issued
from a subroutine that is invoked from an interrupt handler entry routine. Always make sure this
service call is executed in the entry routine or entry function of an interrupt handler. For example, a
program like the one shown below may not operate normally.

.include mr308.inc

/* NG */
.GLB intr
intr:
jsr.b func
func:

ret int

Therefore, write the program as shown below.
.include mr308.inc

/* OK */
.GLB intr
intr:
jsr.b func
ret int
func:
rts

Make sure this service call is issued from only an interrupt handler. If issued from a cyclic handler,
alarm handler, or a task, this service call may not operate normally.

6 If the starting function of an interrupt handler is declared by #pragma INTHANDLER, the ret_int service call is automatically
issued at the exit of the function.

-109 -

1.14. System Configuration Management Function

ref_ver Reference version information
iref_ver Reference version information (handler only)
[[C Language API]]

ER ercd = ref ver(T _RVER *pk rver);
ER ercd = iref ver(T RVER *pk rver);

@ Parameters
T _RVER *pk_rver Pointer to the packet to which version information is returned

Contents of pk rver
typedef struct t rver {

UH maker 0 2 Kernel manufacturer code
UH prid +2 2 Kernel identification number
UH spver +4 2 ITRON specification version number
UH prver +6 2 Kernel version number
UH prno[4] +8 2 Kernel product management information
} T RVER;
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]
.include mr308.inc
ref ver PK VER
iref ver PK VER
@ Parameters
PK_VER Pointer to the packet to which version information is returned

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 Pointer to the packet to which version information is returned
[[Error code]I
None

- 110 -

[[Functional description 1]

This service call reads out information about the version of the currently executing kernel and returns

the result to the area pointed to by pk_rver.

The following information is returned to the packet pointed to by pk_rver.
The code H'115 denoting Renesas Technology Corporation is returned.
The internal identification code IDH’150 of the M3T-MR308 is returned.

The code H’5402 denoting that the kernel is compliant with uITRON Specification Ver 4.02.00 is

The code H'0401 denoting the version of the M3T-MR308/4 is returned.

The 2 low-order digits of the product release year (calendar) and the month H'0510 are

¢ maker
¢ prid
¢ spver
returned.
¢ prver
¢ prno
® prno[0]
The product release number '01' is acquired.
® prnoj[1]
acquired.
® prno[2]
Reserved for future extension.
® prno[3]

Reserved for future extension.

If this service call is to be issued from task context, use ref _ver; if issued from non-task context, use

iref_ver.

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()

T RVER pk_rver;
ref ver(&pk rver);
<<Example statement in assembly language>>
.include mr308.inc

.GLB task
_ refver: .blkb 6
task:
PUSHM A0

ref ver # refver

- 111 -

1.15. Extended Function (Short Data Queue)

Specifications of the short data queue function of MR308 are listed in Table 12. Specifications of the
Short Data Queue Function. This function is outside the scope of yITRON 4.0 Specification.

Item No. | Item Content
1 | Short data queue ID 1-255
> Capacity (data bytes) in short 0-65535
data queue area
3 | Short data size 16 bits
TA_TFIFO: Waiting tasks enqueued in order of
. FIFO
4 | Short data queue attribute TA_TPRI: Waiting tasks enqueued in order of
priority
Table 12. Specifications of the Short Data Queue Function
vsnd_dtq Send to short data queue
vpsnd_dtq Send to short data queue (polling)
vipsnd_dtq Send to short data queue (polling, handler only)
vtsnd_dtq Send to short data queue (with timeout)
visnd_dtq Forced send to short data queue
vifsnd_dtq Forced send to short data queue (handler only)
[[C Language API]]
ER ercd = vsnd dtg(ID vdtqgid, H data);
ER ercd = vpsnd dtg(ID vdtqgid, H data);
ER ercd = vipsnd dtg(ID vdtgid, H data);
ER ercd = vtsnd dtg(ID vdtgid, H data, TMO tmout);
ER ercd = vfsnd dtg(ID vdtgid, H data);
ER ercd = vifsnd dtg(ID vdtgid, H data);

@ Parameters

ID vdtqid ID number of the short data queue to which transmitted
TMO tmout Timeout value(tsnd_dtq)
H data Data to be transmitted

@ Return Parameters
ER ercd Terminated normally (E_OK) or error code

- 112 -

[[Assembly language API]]

.include mr308.inc

vsnd dtg

visnd dtqg
vpsnd_dtqg
vipsnd dtg
vtsnd dtqg
visnd dtqg
vifsnd dtg

o Parameters

VDTQID, DTQDATA
VDTQID, DTQDATA
VDTQID, DTQDATA
VDTQID, DTQDATA
VDTQID, DTQDATA, TMO
VDTQID, DTQDATA
VDTQID, DTQDATA

VDTQID ID number of the short data queue to which transmitted
DTQDATA Data to be transmitted
TMO Timeout value(tsnd_dtq)

® Register contents after service call is issued
vsnd_dtq,vpsnd_dtq,vipsnd_dtq,vfsnd_dtq,vifsnd_dtq

Register name

RO
R1
A0
vtsnd_dtq

Register name
RO
R1
R2
A0

[[Error code]I
E_RLWAI
E_TMOUT
E_ILUSE
EV_RST

Content after service call is issued
Error code
Data to be transmitted

ID number of the short data queue to which transmitted

Content after service call is issued
Error code

Data to be transmitted

Timeout value(16 high-order bits)

ID number of the short data queue to which transmitted

Forced release from waiting

Polling failure or timeout or timed out

Service call improperly used (vfsnd_dtq or vifsnd_dtq is issued for a
short data queue whose dtqcnt = 0)

Released from a wait state by clearing of the short data queue area

- 113 -

[[Functional description]]
This service call sends the signed 2-byte data indicated by data to the short data queue indicated by
vdtqgid. If any task is kept waiting for reception in the target short data queue, the data is not stored in
the short data queue and instead sent to the task at the top of the reception waiting queue, with which
the task is released from the reception wait state.
On the other hand, if vsnd_dtq or visnd_dtq is issued for a short data queue that is full of data, the
task that issued the service call goes from RUNNING state to a data transmission wait state, and is
enqueued in a transmission waiting queue, kept waiting for the short data queue to become available.
In that case, if the attribute of the specified short data queue is TA_TFIFO, the task is enqueued in
order of FIFO; if TA_TPRI, the task is enqueued in order of priority. For vpsnd_dtq and vipsnd_dtq, the
task returns immediately and responds to the call with the error code E_TMOUT.
For the vtsnd_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout
must be within Ox7FFFFFFF. If any value exceeding this limit is specified, the service call may not
operate correctly. If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in
which case the service call operates the same way as vpsnd_dtq. Furthermore, if specified as
tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which case the service call operates the
same way as vsnd_dtq.
If there are no tasks waiting for reception, nor is the short data queue area filled, the transmitted data
is stored in the short data queue.
The task placed into a wait state by execution of the vsnd_dtq or vtsnd_dtq service call is released
from WAITING state in the following cases:

€ When the vrcv_dtq, vtrecv_dtq, vprev_dtq, or viprcv_dtq service call is issued before the
tmout time elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.

€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain
unsatisfied
The error code returned in this case is E. TMOUT.

€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service
call issued from another task or a handler
The error code returned in this case is E_RLWAI.

€ When the target short data queue being waited for is removed by the vrst_vdtq service call
issued from another task
The error code returned in this case is EV_RST.

For vfsnd_dtq and vifsnd_dtq, the data at the top of the short data queue or the oldest data is removed,
and the transmitted data is stored at the tail of the short data queue. If the short data queue area is not
filled with data, vfsnd_dtq and vifsnd_dtq operate the same way as vsnd_dtq.

If this service call is to be issued from task context, use vsnd_dtq,vtsnd_dtq,vpsnd_dtq,vfsnd_dtq; if
issued from non-task context, use vipsnd_dtq,vifsnd_dtq.

- 114 -

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
H datal[10];
void task (void)

if (vend dtq(ID dtq, datal0]) == E RLWAI) {
error (“Forced released\n”) ;

if (vpsnd dtq(ID dtq, data[l])== E_TMOUT) {
error (“Timeout\n”) ;

if (vtsnd dtq(ID dtq, datal2], 10) != E_TMOUT) {
error (“Timeout \n”);

if (vfsnd dtg(ID dtg, data[3]) != E_OK) {
error (“error\n”) ;

}

<<Example statement in assembly language>>
.include mr308.inc

.GLB task
g dtg: .WORD 1234H
task:

PUSHM R1,R2,A0

vtsnd dtg #ID DTQ1l, g dtqg,#100

PUSHM R1,A0
vpsnd_dtg #ID DTQ2, #0FFFFH

PUSHM R1,A0
visnd dtg #ID DTQ3, #0ABCDH

- 115 -

vrcv_dtq Receive from short data queue

vprecv_dtq Receive from short data queue (polling)

viprcv_dtq Receive from short data queue (polling,handler only)
vtrcv_dtq Receive from short data queue (with timeout)

[[C Language API]]

ER ercd = vrcv_dtg(ID dtgid, H *p data);

ER ercd = vprcv_dtg(ID dtgid, H *p data);

ER ercd viprcv_dtg(ID dtgid, H *p data);

ER ercd = vtrcv dtg(ID dtgid, H *p data, TMO tmout);

® Parameters

ID vdtqid ID number of the short data queue from which to receive
TMO tmout Timeout value(vtrcv_dtq)
H *p_data Pointer to the beginning of the area in which received data is stored

o Return Parameters

ER ercd Terminated normally (E_OK) or error code
H *p_data Pointer to the beginning of the area in which received data is stored
[[Assembly language API]]

.include mr308.inc

vrcv_dtg VDTQID

vprcv_dtqg VDTQID

viprcv_dtg VDTQID

vtrcv dtqg VDTQID, TMO

@ Parameters

vDTQID ID number of the short data queue from which to receive
TMO Timeout value(trcv_dtq)

o Register contents after service call is issued
vrev_dtq,vprev_dtq,viprev_dtq
Register name Content after service call is issued

RO Error code

R1 Received data

AO ID number of the short data queue from which to receive

vtrev_dtq

Register name Content after service call is issued

RO Error code

R1 Received data

R2 Timeout value(16 high-order bits)

AO ID number of the short data queue from which to receive
[[Error code]

E_RLWAI Forced release from waiting

E_TMOUT Polling failure or timeout or timed out

- 116 -

[[Functional description]]
This service call receives data from the short data queue indicated by vdtqid and stores the received
data in the area pointed to by p_data. If data is present in the target short data queue, the data at the
top of the queue or the oldest data is received. This results in creating a free space in the short data
queue area, so that a task enqueued in a transmission waiting queue is released from WAITING state,
and starts sending data to the short data queue area.
If no data exist in the short data queue and there is any task waiting to send data (i.e., data bytes in
the short data queue area = 0), data for the task at the top of the data transmission waiting queue is
received. As a result, the task kept waiting to send that data is released from WAITING state.
On the other hand, if vrcv_dtq or vtrcv_dtq is issued for the short data queue which has no data stored
in it, the task that issued the service call goes from RUNNING state to a data reception wait state, and
is enqueued in a data reception waiting queue. At this time, the task is enqueued in order of FIFO. For
the vprcv_dtqg and viprcv_dtq service calls, the task returns immediately and responds to the call with
the error code E_ TMOUT.
For the vircv_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout
must be within OxX7FFFFFFF. If any value exceeding this limit is specified, the service call may not
operate correctly. If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in
which case the service call operates the same way as vprcv_dtq. Furthermore, if specified as
tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which case the service call operates the
same way as vrcv_dtq.
The task placed into a wait state by execution of the vrcv_dtq or vtrcv_dtq service call is released from
the wait state in the following cases:
€ When the vrcv_dtq, vtrecv_dtq, vprev_dtq, or viprcv_dtq service call is issued before the
tmout time elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.
€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain
unsatisfied
The error code returned in this case is E. TMOUT.
€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service
call issued from another task or a handler
The error code returned in this case is E_RLWAI.
If this service call is to be issued from task context, use vrcv_dtq,vircv_dtq,vprcv_dtq; if issued from
non-task context, use viprcv_dtq.

- 117 -

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

H data;

if (vrev_dtg(ID dtqg, &data) != E RLWAI)
error (“forced wakeup\n”) ;

if(vprcv_atq(ID dtqg, &data) != E TMOUT)
error (“Timeout\n”) ;

if (vtrev_dtg(ID dtg, &data, 10) != E TMOUT)
error (“Timeout\n”) ;

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

PUSHM AO,R3
vtrcev_dtq #ID _DTQ1, #TMO_POL

PUSHM AQ
vprcv_dtg #ID DTQ2

PUSHM AQ
vrcev_dtg #ID_DTQ2

- 118 -

vref _dtq Reference short data queue status
viref_dtq Reference short data queue status (handler only)

[[C Language API]]
ER ercd = vref dtg(ID vdtgid, T RDTQ *pk rdtq);
ER ercd = viref dtg(ID vdtgid, T RDTQ *pk rdtqg);

o Parameters

ID vdtqid ID number of the target short data queue

T RDTQ *pk_rdtq Pointer to the packet to which short data queue status is returned
@ Return Parameters

ER ercd Terminated normally (E_OK) or error code

T RDTQ *pk_rdtq Pointer to the packet to which short data queue status is returned

Contents of pk rdtg
typedef struct t rdtqgf{

ID stskid +0 2 Transmission waiting task ID
ID wtskid +2 2 Reception waiting task ID
UINT sdtgent +4 2 Data bytes contained in short data queue
} T RDTQ;
[[Assembly language API 1]

.include mr308.inc
vref_dtq VDTQID, PK_RDTQ
viref dtqVDTQID, PK RDTQ

@ Parameters
vVDTQID ID number of the target short data queue

PK_RDTQ Pointer to the packet to which short data queue status is returned

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code

AO ID number of the target short data queue

A1 Pointer to the packet to which short data queue status is returned
[[Error code]

None

- 119 -

[[Functional description]]
This service call returns various statuses of the short data queue indicated by vdtqid.
& stskid
Returned to stskid is the ID number of the task at the top of a transmission waiting queue (the
next task to be dequeued). If no tasks are kept waiting, TSK_NONE is returned.
¢ wtskid
Returned to wtskid is the ID number of the task at the top of a reception waiting queue (the next
task to be dequeued). If no tasks are kept waiting, TSK_NONE is returned.
¢ sdtqcnt
Returned to sdtqcnt is the number of data bytes stored in the short data queue area.
If this service call is to be issued from task context, use ref_dtq; if issued from non-task context, use
iref_dtq.
[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>

#include “kernel_id.h”
void task ()

T RDTQ rdtg;
ER ercd;

ercd.: vref dtg(ID_DTQ1l, &rdtqg);

<<Example statement in assembly language>>

_ refdtqg: .blkb 6
.include mr308.inc
.GLB task

task:

PUSHM A0,Al
vref_dtqg #ID_DTQ1,#_refdtg

-120 -

1.16. Extended Function (Reset Function)

This function initializes the content of an object. This function is outside the scope of yITRON 4.0
Specification.

vrst_dtq Clear data queue area

[[C Language API]]

ER ercd = vrst dtg(ID dtgid);

@ Parameters
ID dtqid Data queue ID to be cleared

@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]
.include mr308.inc
vrst dtg DTQID

® Parameters
DTQID Data queue ID to be cleared

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 Data queue ID to be cleared
[[Error code 1]
None

[[Functional description 1]
This service call clears the data stored in the data queue indicated by dtqid. If the data queue area has
no more areas to be added and tasks are enqueued in a data transmission waiting queue, all of the
tasks enqueued in the data transmission waiting queue are released from WAITING state.
Furthermore, the error code EV_RST is returned to the tasks that have been released from WAITING
state.
Even when the number of data queues defined is 0, all of the tasks enqueued in a data transmission
waiting queue are released from WAITING state.
This service call can be issued only from task context. It cannot be issued from non-task context.

-121 -

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrst_dtq(ID dtql) ;

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

PUSHM AQ
vrst_dtg #ID_DTQ1

- 122 -

vrst_vdtq Clear short data queue area

[[C Language API]]

ER ercd = vrst vdtg(ID vdtgid);

® Parameters
ID vdtqid Short data queue ID to be cleared

@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

.include mr308.inc
vrst vdtg VDTQID

® Parameters
VDTQID Short data queue ID to be cleared

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 Short data queue ID to be cleared
[[Error code]l
None

[[Functional description 1]
This service call clears the data stored in the short data queue indicated by vdtqid. If the short data
queue area has no more areas to be added and tasks are enqueued in a data transmission waiting
queue, all of the tasks enqueued in the data transmission waiting queue are released from WAITING
state. Furthermore, the error code EV_RST is returned to the tasks that have been released from
WAITING state.
Even when the number of short data queues defined is 0, all of the tasks enqueued in a data
transmission waiting queue are released from WAITING state.
This service call can be issued only from task context. It cannot be issued from non-task context.

-123 -

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrst_vdtq(ID vdtql);

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

PUSHM AQ
vrst_vdtqg #ID_VDTQ1

- 124 -

vrst_mbx Clear mailbox area

[[C Language API]]

ER ercd = vrst mbx(ID mbxid);

® Parameters
ID mbxid Mailbox ID to be cleared

@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]
.include mr308.inc
vrst mbx MBXID

o Parameters
MBXID Mailbox ID to be cleared

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 Mailbox ID to be cleared
[[Error code]l
None

[[Functional description 1]
This service call clears the messages stored in the mailbox indicated by mbxid.
This service call can be issued only from task context. It cannot be issued from non-task context.

- 125 -

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrst_mbx(ID mbxl) ;

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

PUSHM AQ
vrst_mbx #ID_MBX1

- 126 -

vrst_mpf Clear fixed-size memory pool area

[[C Language API]]

ER ercd = vrst mpf(ID mpfid);

® Parameters
ID mpfid Fixed-size memory pool ID to be cleared

@ Return Parameters
ER ercd Terminated normally (E_OK)

[[Assembly language API 1]

.include mr308.inc
vrst mpf MPFID

® Parameters
MPFID Fixed-size memory pool ID to be cleared

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 Fixed-size memory pool ID to be cleared
[[Error code]I
None

[[Functional description 1]
This service call initializes the fixed-size memory pool indicated by mpfid. If tasks are enqueued in a
memory block waiting queue, all of the tasks enqueued in the memory block waiting queue are
released from WAITING state. Furthermore, the error code EV_RST is returned to the tasks that have
been released from WAITING state.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrét_mpf(ID mpfl);

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

PUSHM AQ
vrst_mpf #ID MPF1

- 127 -

vrst_mpl Clear variable-size memory pool area

[[C Language API]]

ER ercd = vrst mpl(ID mplid);

® Parameters
ID mplid Variable-size memory pool ID to be cleared

@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]
.include mr308.inc
vrst mpl MPLID

® Parameters
MPLID Variable-size memory pool ID to be cleared

o Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 Variable-size memory pool ID to be cleared
[[Error code]I
None

[[Functional description 1]
This service call initializes the variable-size memory pool indicated by mplid.
This service call can be issued only from task context. It cannot be issued from non-task context.

- 128 -

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrét_mpl(ID mpll);

}

<<Example statement in assembly language>>
.include mr308.inc
.GLB task

task:

PUSHM AQ
vrst mpl #ID_MPL1

- 129 -

Chapter 2 Stack Size Calculation Method

2.1. Stack Size Calculation Method

The MR308 provides two kinds of stacks: the system stack and the user stack. The stack size
calculation method differ between the stacks.

® User stack

This stack is provided for each task. Therefore, writing an application by using the MR308
requires to allocate the stack area for each stack.

® System stack

This stack is used inside the MR308 or during the execution of the handler.

When a task issues a service call, the MR308 switches the user stack to the system stack. (See
Figure 2.1:System Stack and User Stack)

The system stack uses interrupt stack(ISP).

Task MR308 Service Call Processing Position

User Stack
Register save ‘ x
Stack switching
Service call
rocessing
XXX XXX O System Stack
(interruput stack)
Task Selection
Stack switching | x
Register return

User Stack

Figure 2.1:System Stack and User Stack

-132 -

The sections of the system stack and user stack each are located in the manner shown below. However,
the diagram shown below applies to the case where the stack areas for all tasks are located in the stack
section during configuration.

SFR

System Stack

User satck of
TaskID No. 1

User satck of Stack S

TaskID No. 2 ection

User satck of
TaskID No.n

Figure 2.2: Layout of Stacks

-133 -

2.1.1. User Stack Calculation Method

User stacks must be calculated for each task. The following shows an example for calculating user stacks
in cases when an application is written in the C language and when an application is written in the
assembly language.

® \When an application is written in the C language

Using the stack size calculation utility STK Viewer’, calculate the stack size of each task. The
necessary stack size of a task is the sum of the stack size output by STK Viewer plus a context
storage area of 30 bytes8 The following shows how to calculate a stack size using

®\When an application is written in the assembly language

¢ Sections used in user program
The necessary stack size of a task is the sum of the stack size used by the task in subroutine
call plus the size used to save registers to a stack in that task.
¢+ Sections used in MR308
The sections used in MR308 refer to a stack size that is used for the service calls issued.
MR308 requires that if you issue only the service calls that can be issued from tasks, 6 bytes of
area be allocated for storing the PC and FLG registers. Also, if you issue the service calls that
can be issued from both tasks and handlers, see the stack sizes listed in Table 2. 2 to ensure that
the necessary stack area is allocated.
Furthermore, when issuing multiple service calls, include the maximum value of the stack sizes
used by those service calls as the sections used by MR308 as you calculate the necessary
stack size.

Therefore,
User stack size =
Sections used in user program + registers used + Sections used in MR308
(registers used is total size of used registers. If you used R0,R1,R2 and R3, add by 2bytes. If you used
A0,A1,SB and FB, add by 4bytes.)
Figure 2.3:Example of Use Stack Size Calculation shows an example for calculating a user stack. In the
example below, the registers used by the task are R0, R1, and AQ.

7 STK Viewer is a utility to calculate the stack size included with Renesas C Compiler NC308WA.
8 If written in the C language, this size is fixed.

-134 -

Stack growing direction

When use register RO,R1,R2,A0(10bytes)
4bytes
M
jsr subl 16bytes(PC+FLG+size of registers used)
pd ~
T~ ”
sta_tsk

30bytes(PC+FLG+size of registers used

stack size used by prcv_msg)

pd Y

T~ ”~

prev_dtq
'
[}
1
]
]
[}
]
)
)
[}
1
|‘ ‘I

28bytes

Figure 2.3:Example of Use Stack Size Calculation

-135 -

2.1.2. System Stack Calculation Method

The system stack is most often consumed when an interrupt occurs during service call processing

followed by the occurrence of multiple interrupts.9 The necessary size (the maximum size) of the system
stack can be obtained from the following relation:

Necessary size of the system stack = g 2Bi(y)

The maximum system stack size among the service calls to be used.®.

When sta_tsk, ext_tsk, and dly_tsk are used for example, according to the Table 2.1,each of system
stack size is the following.

Service Call name System Stack Size
sta_tsk 4bytes
ext tsk Obytes
slp_tsk 4bytes
dly tsk 8bytes
Therefore,the maximum system stack size among the service calls to be used is the 8 bytes of
dly_tsk.
o i

The stack size to be used by the interrupt handler."” The details will be described later.
oy

Stack size used by the system clock interrupt handler. This is detailed later.

9 After switchover from user stack to system stack

10 Refer from Table 2.1 to Table 2.3 for the system stack size used for each individual system call.

11 OS-dependent interrupt handler (not including the system clock interrupt handler here) and OS-independent interrupt
handler.

- 136 -

o'The maximum system stack size among the system calls to be used.

Bu:The system stack size to be used by the interrupt handler.

B1

AN
Interrupt
AN

Interrupt

B2

_______ Bn

The necessary system stack

-

N

Figure 2.4: System Stack Calculation Method

-137 -

[(Stack size Bi used by interrupt handlers)]

The stack size used by an interrupt handler that is invoked during a service call can be calculated by the
equation below.
The stack size Bi used by an interrupt handler is shown below.

C language
Using the stack size calculation utility STK Viewer', calculate the stack size of each interrupt
handler.
Refer to the manual of STK Viewer for detailed use of STK Viewer.

Assembly language
The stack size to be used by OS-dependent interrupt handler
= register to be used + user size + stack size to be used by service call

The stack size to be used by OS-independent interrupt handler
= register to be used + user size

User size is the stack size of the area written by user.

Context(30bytes)
\/\ & S
N 7

Interrupt 4bytes
jsr func
30bytes
<. ~
N L
iset_flg
1
1
:
1
]
]
]
]
1
I
1
]
.]
ret_int H
:
[} 1
[} 1
1< ~ 1
s r
! 64bytes '

Context: 30 bytes when written in C language.
When written in assembly language,
Context = size of registers used + 6(PC+FLG)bytes

Figure 2.5: Stack size to be used by Kernel Interrupt Handler

12 STK Viewer is a utility to calculate the stack size included with Renesas C Compiler NC308WA..
- 138 -

[(System stack size y used by system clock interrupt handler)]

When you do not use a system timer, there is no need to add a system stack used by the system clock
interrupt handler.

The system stack size y used by the system clock interrupt handler is whichever larger of the two cases
below:

42 + maximum size used by cyclic handler
42 + maximum size used by alarm handler

C language
Using the stack size calculation utility STK Viewer '3 calculate the stack size of each Alarm or
Cyclic handler.
Refer to the manual of STK Viewer for detailed use of STK Viewer.

Assembly language
The stack size to be used by Alarm or Cyclic handler
= register to be used + user size + stack size to be used by service call
If neither cyclic handler nor alarm handler is used, then
v = 30bytes

When using the interrupt handler and system clock interrupt handler in combination, add the stack sizes
used by both.

13 STK Viewer is a utility to calculate the stack size included with Renesas C Compiler NC308WA.
- 139 -

2.2. Necessary Stack Size
Table 2.1 lists the stack sizes (system stack) used by service calls that can be issued from tasks.

Table 2.1 Stack Sizes Used by System Calls Issued from Tasks (in bytes)

Service Call Stack Size Service Call Stack Size
User System User System
Stack Stack Stack Stack
act_tsk 0 4 rcv._mbx 0(8%) 34
can_act 14 0 prcv_mbx 26(8) 0
sta_tsk 0 4 trcv_mbx 0(8%) 38
ext _tsk 0 4 ref_mbx 14 0
ter_tsk 0 8 get_mpf 0(8%) 34
chg_pri 0 36 pget_mpf 26(8%) 0
get pri 14(8%) 0 tget_mpf 0(8") 38
ref tsk 30 0 rel _mpf 0 8
ref tst 14 0 ref _mpf 14 0
slp_tsk 0 4 pget_mpl 0(8%) 40
tslp_tsk 0 8 rel_mpl 0 76
wup_tsk 0 4 ref_mpl 18 0
can_wup 14 0 set tim 14 0
rel_wai 0 8 get tim 14 0
sus_tsk 0 4 sta_cyc 14 0
rsm_tsk 0 4 stp_cyc 14 0
frsm_tsk 0 4 ref cyc 14 0
dly tsk 0 8 sta_alm 14 0
sig_sem 0 4 stp_alm 14 0
wai_sem 0 34 ref alm 14 0
pol _sem 14 0 rot_rdq 0 0
twai_sem 0 36 get tid 14(8%) 0
ref sem 14 0 loc_cpu 6 0
set flg 0 8 unl_cpu 0 0
clr_flg 14 0 ref_ver 18 0
wai_flg 0(6%) 34 vsnd_dtg 0 34
pol_flg 14(6%) 0 vpsnd_dtq 0 8
twai_flg 0(10%) 34 visnd_dtq 0(8%) 38
ref flg 14 0 vfsnd_dtq 0 8
snd_dtq 0 34 vrcv_dtq 0(6™) 8
psnd_dtq 0 8 vprcv_dtq 0(6™) 8
tsnd_dtq 0(8%) 38 vircv_dtq 0(6™) 8
fsnd_dtq 0 8 vref _dtq 14 0
rcv_dtq 0(8%) 8 vrst_dtq 0 30
prcv_dtq 0(8%) 8 vrst_vdtq 0 30
trev_dtq 0(8%) 8 vrst_mbx 14 0
ref dtq 14 0 vrst_mpf 0 30
snd_mbx 0 28 vrst_ mpl 58 0
dis_dsp 0 0 ena_dsp 0 0

*: Stack sizes used by service call in C programs.

- 140 -

Table 2.2 lists the stack sizes (system stack) used by service calls that can be issued from handlers.

Table 2.2 Stack Sizes Used by System Calls Issued from Handlers (in bytes)

Service Call Stack Size Service Call Stack Size
iact tsk 20 iprcv_mbx 26(34")
ican_act 14 iref_mbx 14
ista_tsk 20 ipget mpf 26(34*)
ichg_pri 50 irel_mpf 28
iget_pri 14(22%) iref_mpf 14
iref tsk 30 iset _tim 14
iref_tst 14 iget_tim 14
iwup_tsk 22 ista_cyc 14

ican_wup 14 istp_cyc 14
irel_wai 22 iref_cyc 14
isus_tsk 18 ista_alm 14
irsm_tsk 18 istp_alm 14
ifrsm_tsk 18 iref_alm 14
isig_sem 26 irot_rdq 18
ipol_sem 14 iget_tid 14(22%)
iref sem 14 iloc_cpu 6
iset flg 30 iunl_cpu 14

iclr_flg 14 ret_int 0
ipol_flg 14(20%) iref_ver 18
iref_flg 14 vipsnd_dtq 28

ipsnd_dtq 28 vifsnd_dtq 28
ifsnd_dtq 28 viprcv_dtq 28(34™)
iprcv_dtq 30(34%) viref dtq 14
iref_dtq 14 isnd_mbx 48
iref_mpl 18

*: Stack sizes used by service call in C programs.

Table 2.3 lists the stack sizes (system stack) used by service calls that can be issued from both tasks and
handlers. If the service call issued from task, system uses user stack. If the service call issued from
handler, system uses system stack.

Table 2.3 Stack Sizes Used by System Calls Issued from Tasks and Handlers (in bytes)
Service Call Stack Size Service Call Stack Size
sns_ctx 14 sns_loc 14
sns_dsp 14 sns_dpn 14

- 141 -

Chapter 3 Appendix

3.1. List of Service Call

Task Management Function Service Call

Service Call name Function

act_tsk [S] | Activate task

iact_tsk [SI | Activate task

can_act [SI | Cancel task activation request

ican_act [SI | Cancel task activation request (handler only)
sta_tsk Activate task with a start code

ista_tsk Activate task with a start code (handler only)
ext_tsk [S] | Terminates invoking task

ter_tsk [S] | Terminate task

chg_pri [S] Change task priority

ichg_pri Change task priority (handler only)

get_pri [S] | Reference task priority

iget_pri Reference task priority (handler only)
ref_tsk Reference task status

iref_tsk Reference task status (handler only)

ref_tst Reference task status (simplified version)
iref_tst Reference task status (simplified version, handler only)

Task Dependent Synchronization Function Service Call

Service Call name Function
slp_tsk [S] | Put task to sleep
tslp_tsk [S] | Put task to sleep(with timeout)

wup_tsk [S] | Wakeup task
iwup_tsk [S] | Wakeup task (handler only)

can_wup [S] | Cancel wakeup request

ican_wup Cancel wakeup request (handler only)
rel_wai [SI | Release task from waiting

irel_wai [S] | Release task from waiting (handler only)
sus_tsk [S] Suspend task

isus_tsk Suspend task (handler only)

rsm_tsk [S] Resume suspended task

irsm_tsk Resume suspended task (handler only)
frsm_tsk [S] | Forcibly resume suspended task
ifrsm_tsk Forcibly resume suspended task (handler only)
dly_tsk [S] | Delay task

- 144 -

Semaphore

Service Call name

Function

sig_sem [S] | Release semaphore resource

isig_sem [S] | Release semaphore resource (handler only)
wai_sem [S] | Acquire semaphore resource

twai_sem [S] | Acquire semaphore resource (with timeout)
pol_sem [S] | Acquire semaphore resource (polling)

ipol_sem Acquire semaphore resource (polling, handler only)
ref_sem Reference semaphore status

iref_sem Reference semaphore status (handler only)
Eventflag

Service Call name

Function

set_flg [S] | Set eventflag

iset_flg [SI | Set eventflag (handler only)

clr_flg [S] | Clear eventflag

iclr_flg Clear eventflag (handler only)

wai_flg [S] | Wait for eventflag

twai_flg [S] | Wait for eventflag (with timeout)

pol_flg [S] | Wait for eventflag (polling)

ipol_flg Wait for eventflag (polling, handler only)
ref_flg Reference eventflag status

iref _flg Reference eventflag status (handler only)

Data Queue

Service Call name

Function

snd_dtq [S]
psnd_dtq [S]
ipsnd_dtq [S]
tsnd_dtq [S]
fsnd_dtq [S]
ifsnd_dtq [S]

Send to data queue

Send to data queue (polling)

Send to data queue (polling, handler only)
Send to data queue (with timeout)

Forced send to data queue

Forced send to data queue (handler only)

rev_dtq [S] | Receive from data queue

prev_dtq [S] | Receive from data queue (polling)

iprev_dtq Receive from data queue (polling, handler only)
trev_dtq [S] | Receive from data queue (with timeout)
ref_dtq Reference data queue status

iref_dtq Reference data queue status (handler only)

- 145 -

Mailbox

Service Call name

Function

snd_mbx [S]
isnd_mbx

rcv_ mbx [S]
trcv_ mbx [S]
prev_ mbx [S]
iprcv_mbx
ref_mbx
iref_mbx

Send to mailbox

Send to mailbox (handler only)

Receive from mailbox

Receive from mailbox (with timeout)
Receive from mailbox (polling)

Receive from mailbox (polling, handler only)
Reference mailbox status

Reference mailbox status (handler only)

Fixed-size memory pool

Service Call name

Function

get_mpf [S]
tget_mpf [S]
pget_mpf [S]
ipget_mpf
rel_mpf [S]
irel_mpf
ref_mpf

ief_mpf

Aquire fixed-size memory block

Aquire fixed-size memory block (with timeout)

Aquire fixed-size memory block (polling)

Aquire fixed-size memory block (polling, handler only)
Release fixed-size memory block

Release fixed-size memory block (handler only)
Reference fixed-size memory pool status

Reference fixed-size memory pool status (handler only)

Variable-size Memory Pool

Service Call name

Function

pget_npl
rel_mpl
ref_mpl
iref_mpl

Aquire variable-size memory block (polling)

Release variable-size memory block

Reference variable-size memory pool status

Reference variable-size memory pool status (handler only)

Time Management Function

Service Call name

Function

set_tim [S] | Set system time
iset_tim Set system time (handler only)
get_tim [SI | Reference system time
iget_tim Reference system time (handler only)
isig_tim [S] | Supply a time tick (handler only)

(This function is built into the kernel)
Cyclic Handler
Service Call name Function
sta_cyc [S] Start cyclic handler operation
ista_cyc Start cyclic handler operation (handler only)
stp_cyc [S] Stops cyclic handler operation
stp_cyc Stops cyclic handler operation (handler only)
ref_cyc Reference cyclic handler status
iref_cyc Reference cyclic handler status (handler only)

- 146 -

Alarm Handler

Service Call name

Function

sta_ alm
ista_ alm
stp_ alm
stp_ alm
ref_alm
iref alm

Start alarm handler operation

Start alarm handler operation (handler only)
Stop alarm handler operation

Stop alarm handler operation (handler only)
Reference alarm handler status

Reference alarm handler status (handler only)

System Status Management Function

Service Call name Function
rot_rdq [SI | Rotate task precedence

irot_rdgq [S] | Rotate task precedence (handler only)
get_tid [SI | Reference task ID in the RUNNING state
iget_tid [S] | Reference task ID in the RUNNING state (handler only)
loc_cpu [S] | Lock the CPU

iloc_cpu [S] | Lock the CPU (handler only)

unl_cpu [S] | Unlock the CPU

iunl_cpu [S] | Unlock the CPU (handler only)

dis_dsp [S] | Disable dispatching

ena_dsp [S] Enable dispatching

sns_ctx [S] Reference context

sns_loc [S] | Reference CPU state

sns_dsp [S] | Reference dispatching state

sns_dpn [S] | Reference dispatching pending state

Interrupt Management Function

Service Call name

Function

ret_int

Returns from an interrupt handler
(when written in assembly language)

System Configuration Management Function

Service Call name

Function

ref_ver
iref_ver

Reference version information
Reference version information (handler only)

- 147 -

Short Data Queue

Service Call name

Function

vsnd_dtq
vpsnd_dtq
vipsnd_dtq
vtsnd_dtq
vfsnd_dtq
vifsnd_dtq
vrev_dtq
vprev_dtq
viprev_dtq
vtrev_dtq
vref_dtq
viref_dtq

Send to short data queue

Send to short data queue (polling)

Send to short data queue (polling, handler only)
Send to short data queue (with timeout)

Forced send to short data queue

Forced send to short data queue (handler only)
Receive from short data queue

Receive from short data queue (polling)
Receive from short data queue (polling, handler only)
Receive from short data queue (with timeout)
Reference short data queue status

Reference short data queue status (handler only)

Extended Function

Service Call name

Function

vrst_dtq Clear data queue area

vrst_vdtq Clear short data queue area
vrst_mbx Clear mailbox area

vrst_mpf Clear fixed-size memory pool area
vrst_mpl Clear variable-size memory pool area

- 148 -

3.2. List of Error code

Error code Value Description

E_OK 0 Terminated normally

E_ILUSE -28 Service call improperly used

E_OBJ -41 Object status invalid

E_QOVR -43 Queuing or nest overflow

E_TMOUT -50 Polling failed or timeout

E_RLWAI -49 Forced release from waiting

EV_RST -254 Released from WAITING state by clearing

- 149 -

3.3. Data type

typedef
typedef
typedef
typedef
typedef
typedef
typedef

typedef
typedef

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

typedef
} SYSTIM;

typedef
typedef

signed char
signed short
signed long
unsigned char
unsigned short
unsigned long
char

short

long

void
void

struct
UH
uw

B;
H;
W
UB;
UH;
uw;
VB

VH;
Vs

*VP;
(+FP) O3
INT
UINT;
PN

ID;
PRI;
T™O;
ER;
ATR;
STAT;
MODE ;
SIZE;
RELTIM
VP_INT;

systim{
utime;
ltimer;

ER_ID;
ER_UINT;

/%
/%
/%
/%
/%
/%
/%

/%

/%

/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
or
/%
/%
/%

/%
/%

Signed 8-bit integer */

Signed 16-bit integer */

Signed 32-bit integer */

Unsigned 8-bit integer */

Unsigned 16-bit integer */

Unsigned 32-bit integer */

One whose data type does not match, signed
(8 bits in size) */

One whose data type does not match, signed
(16 bits in size) */

One whose data type does not match, signed
(32 bits in size) */

Pointer to one whose data type does not match */
Start address of program, general */
Signed 32-bit integer */

Unsigned 32-bit integer */

Function code */

Object ID number */

Task priority */

Timeout */

Error code (signed integer) */

Object attribute (unsigned integer) */
Task status */

Operation mode of service call */

Size of memory area */

Relative time */

Pointer to one whose data type is indeterminate
signed integer in sizes natural to processor */
System time */

16 high-order bits of time */

16 low-order bits of time */

Error code or ID */
Error code or unsigned integer */

- 150 -

3.4. Common Constants and Packet Format of Structure

----Common formats----

TRUE 1 /* True */
FALSE 0 /* False */
----Formats related to task management----
TSK_SELF 0 /* Specifies the issuing task itself */
TPRI_RUN 0 /* Specifies priority of task being executed then */
typedef struct t_rtsk {
STAT tskstat; /* Task status */
PRI tskpri; /* Current priority of task */
PRI tskbpri; /* Base priority of task */
STAT tskwait; /* Reason for which task is kept waiting */
D wid; /* Object ID for which task is kept waiting */
TMO tskatr; /* Remaining time before task times out */
UINT actent; /* Number of activation requests */
UINT wupcent; /* Number of wakeup requests */
UINT suscnt; /* Number of suspension requests */
} T_RTSK;
typedef struct t_rtst {
STAT tskstat; /* Task status */
STAT tskwait; /* Reason for which task is kept waiting */
} T_RTST;

----Formats related to semaphore----
typedef struct t_rsem {

ID wtskid; /* ID number of task at the top of waiting queue */
INT sement; /* Current semaphore count value */

} T_RSEM;

----Formats related to eventflag----

wimod:

TWF_ANDW H0000 /* AND wait */
TWF_ORW H0002 /* OR wait */
typedef struct t_rflg {

ID wtskid; /* ID number of task at the top of waiting queue */
UINT flgptn; /* Current bit pattern of eventflag */
} T_RFLG;

----Formats related to data queue and short data queue----
typedef struct t_rdtq {

1D stskid; /* ID number of task at the top of transmission waiting queue */
ID rtskid; /* ID number of task at the top of reception waiting queue */
UINT sdtqent; /* Number of data bytes contained in data queue */

} T_RDTQ;

----Formats related to mailbox----
typedef struct t_msg 1

VP msghead; /* Message header */
} T_MSG;
typedef struct t_msg pri {
T_MSG msgque; /* Message header */
PRI msgpri; /* Message priority */
} T_MSG_PRI;
typedef struct t_mbx {
ID wtskid; /* ID number of task at the top of waiting queue */
T _MSG *pk_msg; /* Next message to be received */
} T_RMBX;

----Formats related to fixed-size memory pool----
typedef struct t_rmpf {

ID wtskid; /* ID number of task at the top of memory acquisition waiting queue */
UINT frbent; /* Number of memory blocks */
} T_RMPF;

- 151 -

----Formats related to Variable-size Memory pool----
typedef struct t_rmpl {

ID wtskid; /* ID number of task at the top of memory acquisition waiting queue */
SIZE fmplsz; /* Total size of free areas */
UINT fblksz; /* Maximum memory block size that can be acquired immediately */

} T_RMPL;

----Formats related to cyclic handler----
typedef struct t_rcyc {

STAT cycstat; /* Operating status of cyclic handler */
RELTIM lefttim; /* Remaining time before cyclic handler starts */
} T_RCYC;

----Formats related to alarm handler----
typedef struct t_ralm {

STAT almstat; /* Operating status of alarm handler */
RELTIM lefttim; /* Remaining time before alarm handler starts */
} T_RALM;

----Formats related to system management----
typedef struct t_rver {

UH maker; I* Maker */

UH prid; /* Type number */

UH spver; /* Specification version */

UH prver; /* Product version */

UH prnol4]; /* Product management information */
} T_RVER;

- 152 -

3.5. Assembly Language Interface

When issuing a service call in the assembly language, you need to use macros prepared for invoking

service calls.

Processing in a service call invocation macro involves setting each parameter to registers and starting
execution of a service call routine by a software interrupt. If you issue service calls directly without using
a service call invocation macro, your program may not be guaranteed of compatibility with future versions
of MR308.

The table below lists the assembly language interface parameters. The values set forth in pITRON

specifications are not used for the function code.

Task Management Function

Parameter ReturnParameter
ServiceCall | INTNo.
runccode | rq R3 | A0 Al code | RO AO

ista_tsk 62 10 | stacd stacd tskid - ercd -
sta_tsk 63 8 | stacd stacd tskid - ercd -
act_tsk 63 0]- - tskid - ercd -
iact_tsk 62 2| - - tskid - ercd -
ter_tsk 63 14 | - - tskid - ercd -
can_act 62 4| - - tskid - actent -
ican_act 62 6| - - tskid - actent -
chg_pri 63 16 | - tskpri tskid - ercd -
ichg_pri 62 18 | - tskpri tskid - ercd -
rel_wai 63 44 | - - tskid - ercd -
irel_wai 62 46 | - - tskid - ercd -

ref tst 62 28 | - - tskid pk_rtst ercd -
iref_tst 62 30 | - - tskid pk_rtst ercd -
ref_tsk 62 24 | - - tskid pk_rtsk ercd -
iref_tsk 62 26 | - - tskid pk_rtsk ercd -
ext_tsk 58 106 | - - - - - -
get_pri 62 20 | - - tskid - ercd tskpri
iget_pri 62 22 | - - tskid - ercd tskpri

- 153 -

Task Dependent Synchronization Function

Parameter ReturnParameter
ServiceCall | INTNo.
El(J)nCCOde R1 R3 A0 III;\JncCode RO
slp_tsk 63 32 | - - - - ercd
wup_tsk 63 36 | - - tskid - ercd
iwup_tsk 62 38 | - - tskid - ercd
can_wup 62 40 | - - tskid - wupcnt
ican_wup 62 42 | - - tskid - wupcent
tslp_tsk 63 34 | tmout | tmout | - - ercd
sus_tsk 63 48 | - - tskid - ercd
isus_tsk 62 50 | - - tskid - ercd
rsm_tsk 63 52 | - - tskid - ercd
irsm_tsk 62 54 | - - tskid - ercd
frsm_tsk 63 56 | - - tskid - ercd
ifrsm_tsk 62 58 | - - tskid - ercd
dly_tsk 63 60 | tmout | tmout | - - ercd
Synchronization & Communication Function
Parameter ReturnParameter
ServiceCall | INTNo.

Fanecode | g Rz |R3 [A0 |Al _ |Ro |Ri|R2 |R3
wai_sem 63 66 | - - - semid | - ercd | - - -
pol_sem 62 68 | - - - semid | - ercd | - - -
ipol_sem 62 70 | - - - semid | - ercd | - - -
sig_sem 63 62 | - - - semid | - ercd | - - -
isig_sem 62 64 | - - - semid | - ercd | - - -
twai_sem 63 72 | tmout - tmout | semid | - ercd | - - -
ref_sem 62 74 | - - - semid | pk_rsem ercd | - - -
iref_sem 62 76 | - - - semid | pk_rsem ercd | - - -
wai_flg 63 86 | wfmode | - waiptn | flgid - ercd | - flgptn | -
twai_flg 55 | tmout wfmode | tmout | waiptn | flgid 92 | ercd | - flgptn | -
pol_flg 62 88 | wfmode | - waiptn | flgid - ercd | - flgptn | -
ipol_flg 62 90 | wfmode | - waiptn | flgid - ercd | - figptn | -
set_flg 63 78 | - - setptn | flgid - ercd | - - -
iset_flg 62 80 | - - setptn | flgid - ercd | - - -
ref_flg 62 94 | - - - flgid pk_rflg ercd | - - -
iref_flg 62 96 | - - - flgid pk_rflg ercd | - - -
clr_flg 62 82 | - - clrptn | flgid - ercd | - - -
iclr_flg 62 84 | - - clrptn | flgid - ercd | - - -
snd_dtq 63 98 | data - data dtqid | - ercd | - - -
psnd_dtq 63 100 | data - data dtgid | - ercd | - - -
ipsnd_dtq 62 102 | data - data dtqid | - ercd | - - -
fsnd_dtq 63 106 | data - data dtqid | - ercd | - - -
ifsnd_dtq 62 108 | data - data dtgid | - ercd | - - -
tsnd_dtq 55 | tmout data tmout | data dtqid 104 | ercd | - - -

- 154 -

Synchronization & Communication Function

Parameter ReturnParameter

ServiceCall | INTNo.

ronccode IRy |r2 |R3 A0 [AT RO |R R2 R3
rcv_dtq 63 110 | - - - dtgid | - ercd | data - data
prcv_dtq 63 112 | - - - dtqid | - ercd | data - data
iprcv_dtq 62 114 | - - - dtqid | - ercd | data - data
trev_dtq 63 116 | tmout | - tmout | dtgid | - ercd | data - data
ref_dtq 62 118 | - - - dtgid | pk_rdtq ercd | - - -
iref_dtq 62 120 | - - - dtqid | pk_rdtq ercd | - - -
snd_mbx 63 122 | - - - mbxid | pk_msg ercd | - - -
isnd_mbx 62 124 | - - - mbxid | pk_msg ercd | - - -
rcv_mbx 63 126 | - - - mbxid | - ercd | pk_msg | pk_msg | -
prcv_mbx 62 128 | - - - mbxid | - ercd | pk_msg | pk_msg | -
iprcv_mbx 62 130 | - - - mbxid | - ercd | pk_msg | pk_msg | -
trcv_mbx 63 132 | tmout | - tmout | mbxid | - ercd | pk_msg | pk_msg | -
ref_mbx 62 134 | - - - mbxid | pk_rmbx ercd | - - -
iref_mbx 62 136 | - - - mbxid | pk_rmbx ercd | - - -
System Management Functions

Parameter ReturnParameter

ServiceCall | INTNo. Elénccode R3 RO A0
rot_rdq 63 190 | tskpri | ercd -
irot_rdq 62 192 | tskpri | ercd --
get_tid 62 194 | -- ercd tskid
iget_tid 62 196 | -- ercd tskid
loc_cpu 59 198 | -- ercd -
iloc_cpu 59 200 | -- ercd -
dis_dsp 60 206 | -- ercd --
ena_dsp 63 208 | -- ercd --
unl_cpu 63 202 | -- ercd -
iunl_cpu 62 204 | -- ercd -
sns_ctx 62 210 | -- ercd -
sns_loc 62 212 | -- ercd -
sns_dsp 62 214 | -- ercd -
sns_dpn 62 216 | -- ercd -
Interrupt Management Functions

Parameter ReturnParameter
ServiceCall | INTNo. | FuncCode

RO RO
ret_int 61| - -

- 155 -

Memorypool Management Functions

Parameter ReturnParameter
ServiceCall | INTNo.

EL(’)“CC“G’ R1 |R2 R3 | A0 ?JncCo do | RO R1 R2 R3
get_mpf 63 140 | - - - mpfid - ercd p_blk | - p_blk
pget_mpf 62 138 | - - - mpfid - ercd p_blk |- p_blk
ipget_mpf 62 246 | - - - mpfid - ercd p_blk |- p_blk
tget_mpf 63 142 | tmout | - tmout | mpfid - ercd p_blk |- p_blk
rel_mpf 63 144 | blk - blk mpfid - ercd - - -
irel_mpf 62 146 | blk - blk mpfid - ercd - - -
ref_mpf 62 148 | - - - mpfid pk_rmpf ercd - - -
iref_mpf 62 150 | - - - mpfid pk_rmpf ercd - - -
pget_mpl 63 152 | blksz | - - mplid - ercd p_blk |- p_blk
rel_mpl 63 154 | blk - blk mplid ercd - - -
ref_mpl 62 156 | - - - mplid pk_rmpl ercd - - -
iref_mpl 62 262 | - - - mplid pk_rmpl ercd - - -
Time Management Functions

Parameter ReturnParameter
ServiceCall | INTNo.

EL(J)nCCOde R1 R3 A0 Iél]ncCode RO
set_tim 62 158 | - - p_systim | - ercd
iset_tim 62 160 | - - p_systim | - ercd
get_tim 62 162 | - - p_systim | - ercd
iget_tim 62 164 | - - p_systim | - ercd
sta_cyc 62 166 | - - cycid - ercd
ista_cyc 62 168 | - - cycid - ercd
stp_cyc 62 170 | - - cycid - ercd
istp_cyc 62 172 | - - cycid - ercd
ref_cyc 62 174 | - - cycid pk_rcyc ercd
iref_cyc 62 176 | - - cycid pk_rcyc ercd
sta_alm 62 178 | almtim | almtim | almid - ercd
ista_alm 62 180 | almtim | almtim | almid - ercd
stp_alm 62 182 | - - almid - ercd
istp_alm 62 184 | - - almid - ercd
ref_alm 62 186 | - - almid pk_ralm ercd
iref_alm 62 188 | - - almid pk_ralm ercd
System Configuration Management Function

Parameter ReturnParameter
ServiceCall | INTNo.

El(J)ncCode AQ RO
ref_ver 62 218 | pk_rver ercd
iref_ver 62 220 | pk_rver ercd

- 156 -

Extended Function(Reset functions)

Parameter ReturnParameter
ServiceCall | INTNo.
EléncCode AO RO

vrst_vdtq 63 256 | vdtqid ercd
vrst_dtq 63 248 | dtqid ercd
vrst_mbx 62 250 | mbxid ercd
vrst_mpf 63 252 | mpfid ercd
vrst_mpl 62 254 | mplid ercd

Extended Function(Short data queue functions)

Parameter ReturnParameter
ServiceCall INTNo.
ponecode 1Ry IRz |R3 (A0 AT IR0 |RI R2 R3
vsnd_dtq 63 222 | data - - vdtqid | - ercd | - - -
vpsnd_dtq 63 224 | data - - vdtqid | - ercd | - - -
vipsnd_dtq 62 226 | data - - vdtqid | - ercd | - - -
vfsnd_dtq 63 230 | data - - vdtgid | - ercd | - - -
vifsnd_dtq 62 232 | data - - vdtqid | - ercd | - - -
vtsnd_dtq 55 tmout | data tmout vdtqid 228 | ercd | - - -
vrev_dtq 63 234 | - - - vdtqid | - ercd | data - -
vprcv_dtq 63 236 | - - - vdtqid | - ercd | data - -
viprcv_dtq 62 238 | - - - vdtqid | - ercd | data - -
vircv_dtq 63 240 | tmout | - tmout | vdtqid | - ercd | data - -
vref_dtq 62 242 | - - - vdtqid | pk_rdtg ercd | - - -
viref_dtq 62 244 | - - - vdtqid | pk_rdtq ercd | - - -

- 157 -

Real-time OS for M16C/70,80,M32C/80 Series
M3T-MR308/4 Reference Manual

Publication Date: Nov. 1, 2005 Rev.2.00

. . Sales Strategic Planning Div.
Published by: Renesas Technology Corp.

Application Engineering Department 1

Edited by: Renesas Solutions Corp.

© 2005. Renesas Technology Corp. and Renesas Solutions Corp.,

M3T-MR308/4
Reference Manual

LENESAS

RenesasTechnology Corp.
2-6-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan

	Service Call Reference
	Task Management Function
	act_tsk Activate task
	iact_tsk Activate task (handler only)
	can_act Cancel task activation request
	ican_act Cancel task activation request (handler only)
	sta_tsk Activate task with a start code
	ista_tsk Activate task with a start code (handler only)
	ext_tsk Terminates invoking task
	ter_tsk Terminate task
	chg_pri Change task priority
	ichg_pri Change task priority(handler only)
	get_pri Reference task priority
	iget_pri Reference task priority(handler only)
	ref_tsk Reference task status
	iref_tsk Reference task status (handler only)
	ref_tst Reference task status (simplified version)
	iref_tst Reference task status (simplified version, handler

	Task Dependent Synchronization Function
	slp_tsk Put task to sleep
	tslp_tsk Put task to sleep (with timeout)
	wup_tsk Wakeup task
	iwup_tsk Wakeup task (handler only)
	can_wup Cancel wakeup request
	ican_wup Cancel wakeup request (handler only)
	rel_wai Release task from waiting
	irel_wai Release task from waiting (handler only)
	sus_tsk Suspend task
	isus_tsk Suspend task (handler only)
	rsm_tsk Resume suspended task
	irsm_tsk Resume suspended task(handler only)
	frsm_tsk Forcibly resume suspended task
	ifrsm_tsk Forcibly resume suspended task(handler only)
	dly_tsk Delay task

	Synchronization & Communication Function (Semaphore)
	sig_sem Release semaphore resource
	isig_sem Release semaphore resource (handler only)
	wai_sem Acquire semaphore resource
	pol_sem Acquire semaphore resource (polling)
	ipol_sem Acquire semaphore resource (polling, handler only)
	twai_sem Acquire semaphore resource(with timeout)
	ref_sem Reference semaphore status
	iref_sem Reference semaphore status (handler only)

	Synchronization & Communication Function (Eventflag)
	set_flg Set eventflag
	iset_flg Set eventflag (handler only)
	clr_flg Clear eventflag
	iclr_flg Clear eventflag (handler only)
	wai_flg Wait for eventflag
	pol_flg Wait for eventflag(polling)
	ipol_flg Wait for eventflag(polling, handler only)
	twai_flg Wait for eventflag(with timeout)
	ref_flg Reference eventflag status
	iref_flg Reference eventflag status (handler only)

	Synchronization & Communication Function (Data Queue)
	snd_dtq Send to data queue
	psnd_dtq Send to data queue (polling)
	ipsnd_dtq Send to data queue (polling, handler only)
	tsnd_dtq Send to data queue (with timeout)
	fsnd_dtq Forced send to data queue
	ifsnd_dtq Forced send to data queue (handler only)
	rcv_dtq Receive from data queue
	prcv_dtq Receive from data queue (polling)
	iprcv_dtq Receive from data queue (polling, handler only)
	trcv_dtq Receive from data queue (with timeout)
	ref_dtq Reference data queue status
	iref_dtq Reference data queue status (handler only)

	Synchronization & Communication Function (Mailbox)
	snd_mbx Send to mailbox
	isnd_mbx Send to mailbox (handler only)
	rcv_mbx Receive from mailbox
	prcv_mbx Receive from mailbox (polling)
	iprcv_mbx Receive from mailbox (polling, handler only)
	trcv_mbx Receive from mailbox (with timeout)
	ref_mbx Reference mailbox status
	iref_mbx Reference mailbox status (handler only)

	Memory Pool Management Function (Fixed-size Memory Pool)
	get_mpf Aquire fixed-size memory block
	pget_mpf Aquire fixed-size memory block (polling)
	ipget_mpf Aquire fixed-size memory block (polling, handler o
	tget_mpf Aquire fixed-size memory block (with timeout)
	rel_mpf Release fixed-size memory block
	irel_mpf Release fixed-size memory block (handler only)
	ref_mpf Reference fixed-size memory pool status
	iref_mpf Reference fixed-size memory pool status�(handler on

	Memory Pool Management Function (Variable-size Memory Pool)
	pget_mpl Aquire variable-size memory block (polling)
	rel_mpl Release variable-size memory block
	ref_mpl Reference variable-size memory pool status
	iref_mpl Reference variable-size memory pool status�(handler

	Time Management Function
	set_tim Set system time
	iset_tim Set system time (handler only)
	get_tim Reference system time
	iget_tim Reference system time (handler only)
	isig_tim Supply a time tick

	Time Management Function (Cyclic Handler)
	sta_cyc Start cyclic handler operation
	ista_cyc Start cyclic handler operation (handler only)
	stp_cyc Stops cyclic handler operation
	istp_cyc Stops cyclic handler operation (handler only)
	ref_cyc Reference cyclic handler status
	iref_cyc Reference cyclic handler status (handler only)

	Time Management Function (Alarm Handler)
	sta_alm Start alarm handler operation
	ista_alm Start alarm handler operation (handler only)
	stp_alm Stop alarm handler operation
	istp_alm Stop alarm handler operation (handler only)
	ref_alm Reference alarm handler status
	iref_alm Reference alarm handler status (handler only)

	System Status Management Function
	rot_rdq Rotate task precedence
	irot_rdq Rotate task precedence (handler only)
	get_tid Reference task ID in the RUNNING state
	iget_tid Reference task ID in the RUNNING state�(handler onl
	loc_cpu Lock the CPU
	iloc_cpu Lock the CPU (handler only)
	unl_cpu Unlock the CPU
	iunl_cpu Unlock the CPU (handler only)
	dis_dsp Disable dispatching
	ena_dsp Enables dispatching
	sns_ctx Reference context
	sns_loc Reference CPU state
	sns_dsp Reference dispatching state
	sns_dpn Reference dispatching pending state

	Interrupt Management Function
	ret_int Returns from an interrupt handler (when written i

	System Configuration Management Function
	ref_ver Reference version information
	iref_ver Reference version information (handler only)

	Extended Function (Short Data Queue)
	vsnd_dtq Send to short data queue
	vpsnd_dtq Send to short data queue (polling)
	vipsnd_dtq Send to short data queue (polling, handler only)
	vtsnd_dtq Send to short data queue (with timeout)
	vfsnd_dtq Forced send to short data queue
	vifsnd_dtq Forced send to short data queue (handler only)
	vrcv_dtq Receive from short data queue
	vprcv_dtq Receive from short data queue (polling)
	viprcv_dtq Receive from short data queue (polling,handler on
	vtrcv_dtq Receive from short data queue (with timeout)
	vref_dtq Reference short data queue status
	viref_dtq Reference short data queue status (handler only)

	Extended Function (Reset Function)
	vrst_dtq Clear data queue area
	vrst_vdtq Clear short data queue area
	vrst_mbx Clear mailbox area
	vrst_mpf Clear fixed-size memory pool area
	vrst_mpl Clear variable-size memory pool area

	Stack Size Calculation Method
	Stack Size Calculation Method
	User Stack Calculation Method
	System Stack Calculation Method

	Necessary Stack Size

	Appendix
	List of Service Call
	List of Error code
	Data type
	Common Constants and Packet Format of Structure
	Assembly Language Interface

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

