VO BDSHADD

-
>

¢
o
“
d
Py
‘.
6O
'

APPLICATION NOTE

Using a numeric camera OV7670

LENESANS

POLYTECH"
CLERMONT-FERRAND

Geoffrey Raynal

0



Summary
= U I - | o L= USROS

I Lo 1T 11 oL USRI
T oY [V 4T ] o FOS PRSPPI
o ¥=] o1 1 o1 o= SR
COMIMUNICATIONS. ccee ittt ettt e e e ettt e et e e e s st b bt e e e e e e s s s beaaeeeeeseaaasbbetaeeeeeesasnbbaaeaeesssannssraaaaeens
T g I =T ole o) i T={ U= 4[] o TP
CommUNICAtioNS PEFIPNEIAIS ......oiiieiee e e e e e et e e e e saba e e e e earee e e ennreeas

23] o Lo =4 =T o] o1V 2SR



Figure Table

Figure 1 J6 port 0N RXGAM BOAId.......ccccuiiiiiiiiiieieiiieeesiiiteeeseieeesssiieeeessateeesssaseeesssnnaeessnssaeessnnseessssssneesns
Figure 2 timing reference for SCCB llaiSiON .......coiccuiiiiiiiiiie e rre e e e erae e e e eeaee e
Figure 3 3 phases COMMUNICAtION.....cciiiiiiiieiiieecciiee et ee st e e e e e st e e e s rrae e e ssstae e e esataeesssnsaeeesnnsseeesas
Figure 4 3 phases Writing COMMUNICATION ....uviiiiiiiiee e re e e s sree e e s sasaeeeeas
Figure 5 2 phases Writing COmMMUNICAtION .......ciiiiiiiiiiiiiie e rre e e e rtae e e e reaeeeeas
Figure 6 2 phases read COMMUNICALION ....ciiiciiiiiiiiiiieiiiiee e ee et e e e e srre e e s saae e e s satae e e ssnbeeeesnnsaeeesas
Figure 7 Timing reference parallel communiCation ..........coocciiiiieiiiii e
Figure 8 Flow 12C communication initialization ..........cccuviiiiciie e
Figure 9 PDC flow chart initialization ........cooeeiiiiiiciiee ettt e e s saaee e

Table Table

B o1 1 LU T A o1 o W [=TY ol o d o o SR
Tableau 2 INitialization FEGISTEI ..ccuiiii et e e tae e e st aeeeeseaeeeeas
Tableau 3 Initialization register for QVGA.........ooo it e e e e e ta e e e e sba e e e esasaeeeesaraeeaens


file:///D:/Travail/2015/projet/application%20note.docx%23_Toc411285663
file:///D:/Travail/2015/projet/application%20note.docx%23_Toc411285664

Introduction

This Application Note shows how to use a numeric camera OV7670 on a RX64M microcontroller.
Explanation and diagrams are specific to the hardware and come from manufacturers. Results and
numbers which are given here could not be use with your hardware, in this case refer on your
Hardware manual.

Numeric cameras have an important place in electronics today, image processing algorithm become
more and more efficiently. Many devices use video to work, as drones, car, robot. So it will be
necessary to integrate video processing. The aim of this last year study project was to realize a
MIJPEG encoder on a RX64M, and coding a video coming from an OV7670 camera device. Method
used to get pictures on the chip is describe in this AN.

Establishing

The device used was an OV7670 made by Omni vision.
Frequently, the device was sold welded on a board, and contains only 18 pins instead of 24.

The device should be connected on the J6 port on the RX64M’s starter kit board. All pins of the
Camera are explained below Figure 1

PDC
Board_5V Board_3V3
) )
J26
PDC(DNF)
1 2
3 4
i - B - Pxcu
VI ING RWR 9 10 RWR HIGHC
e BER AR n 12 R FeDe
pibs e 13 14 AR PR
PIXD3 W 15 16 2'%/\3/3 PIXD2
R3 R R3 R
PIXD1 R3 17 18 R3 PIXDO
PDC_SSDA6 < __> AR 19 20 REAIR Z S  PDC_SSCL6
GROUND GROUND
Figure 1 J6 port on RX64M Board
Tableau 1 pin description
N° broche Nom 1/O Description Connexion port J6
1 VDD | Pin 2 : Board_3V3
2 GND | Pin3,4,7:
GROUND




3 SIOC I 12C Clock Pin 20 :
PDC_SSCL6
4 SIOD I I12C Data Pin19:
PDC_SSDA6
5 VSYNC 0 Vetical Pin 9 : VSYNC
syncrhonization
signal
6 HREF 0] Horizontal Pin 10 : HSYNC
synchronization
signal
7 PCLK 0] Pixel clock from the Pin 5:PCKO
camera
8 XCLK 0] Pixel clock from the Pin 8 : PIXCLK
microcontroler
9 D7 (0] Pin 11 : PIXD7
10 D6 0 Pin 12 : PIXD6
11 D5 0 Pin 13 : PIXD5
12 D4 0 Pin 14 : PIXD4
13 D3 0 Pin 15 : PIXD3
14 D2 0 Pin 16 : PIXD2
15 D1 0 Pin 17 : PIXD1
16 DO 0 Pin 18 : PIXDO
17 Reset I Reset pin Pin 6 : RESn
18 Pwdn I Power down pin NC*

Communications

Generally cameras have two type of communications. A slow one, as R$232 or like here, 12C at 400
kHz, this communication serves to setup the device to send pictures in a particular format, GVB, VGA,
and at the whished speed. The second communication, faster (from 15 to 30 MHz) is an 8 bit parallel
communication which allow to keep image pixels.

The setup communication of the OV7670 is a SCCB liaison, an Omni vision’s communication, this
communication work with simple 12C. The difference whit the 12C standard is that there is no
acknowledgment after a byte reception. So do not take into account this acknowledge. Chronogram
of this communication is given in figure 2.

Figure 4 SCCB Timing Diagram

t. —»l le—
F Y

414—&0w—4>

sio_c N
t T tiosta t
SU:STA — ; HOEDAT,

sio_D
IN /

taa Il 9
SIo_D x
ouT ¢
22

Figure 2 timing reference for SCCB liaison

tBUF




Communication are made in 3 steps figure 3

| | | |
—7l6ls5]4l3]2]tjolxI7l6]5 4]3 211]olx]7]6)5]143]2]L|o]x}—
‘I phase 1 I phase 2 1‘ phase 3 I

| | [ |
SCCB_AP_006

phase 1: IP address
phase 2: sub-address / read data
phase 3: write data

Figure 3 3 phases communication

Writing a register use the three phases, as shown in the figure 4

| | |
— IP address | X sub-address | X write data | X ——

I phase 1 } phase 2 } phase 3 {
| | I |
SCCB_AP_007

Figure 4 3 phases writing communication

Reading is made in a 2 phases as shown in figure 6, after make a 2 or 3 phases writing. Figure 4-5

| |
— IP address | x sub-address IXH—
l phase 1 l phase 2 :
| | |
SCCB_AP_008
Figure 5 2 phases writing communication
| |
—] IP address I X read data NA——
| phasel | phase 2 I

SCCB_AP_009

Figure 6 2 phases read communication
The default 12C address of the device is in hexadecimal 0x42

The communication which allow to keep the picture, is a 8 bit parallel communication which is
synchronized with 3 signals : VSYNC, HREF, PICLK Figure 7. The state machine to implement the
algorithm is given in annex 1.



Horizontal Timing

r—tPCLx
<IWAWEW S\
Lo
HREF \ (Row Data)
-

>tsu<—

> t

HD

D[7:0] XLast Bytex First Byte X X: XLast ByteX
§ )

— [+ Sw

VGA Frame Timing

-« 510 Xt -

VSYNC ' | - |

3 17t -~ 480 x tLINE
-L—.L— —
X tLINE LINE - > tLINE =784 tP 10 tLINE —
> 144 t,

HREF [ | |_‘ m

- -
3°‘P;;|“|‘_640t1[} <—45t,.“ 4-‘|“<;1?t,,

T T O 1 1 O 1 2

PO - P639 —L——l

Row 0 Row 1 Row 2 Row 479

Figure 7 Timing reference parallel communication

Register configuration

Setting up the camera begin by writing 0x80 in the register COM7, followed by waiting 1 ms. This

allow to reinitialize all the device registers, and put default values inside.

Register to initialize after is describe in table 2

Address Register Name Default value Description Note
(HEX) (HEX)
11 CLKRC 80 Internal Clock

Allow to set PIl and
pre-scale for the
output clock

3A TSLB 0C Line Buffer Test
Option




Allow to set the
output sequence
with COM13
3D COM13 99 Common Control Enabling
13 Gamma and
Allow to set the UV saturation,
output sequence
with TSLB and set the
output
sequence
15 CcComM10 00 Common Control
10
Synchonization
signal option
Tableau 2 Initialization register
Table 3 describes configuration of the device to set it in QVGA mode without zoom
Address Register Name Setting value Description
(HEX) (HEX)
12 com7 10 QVGA selection
ocC ComM3 04 Down sampling
selected
3E coOM14 19 Enable DCW and
scaling PCLK
Scaling parametters
can be adjusted
manually
PCLK divided by 2

Tableau 3 Initialization register for QVGA

Timing constraint are given in the page 6 of the camera’s hardware manual. It’s necessary to apply
them during the initialization flow, and the setting of communication peripherals on RX64M.

Communications Peripherals

The SCCB liaison works with 400 kHz 12C standard communication. As it said below this
communication serves to setup the camera’s registers. This communication is very simple to
instantiate on a microcontroller and some code are available on the internet to make it by yourself.
In order to use the hardware peripheral it is necessary to know where the SCCB pins of the camera
are connected. On RX64M starter kit board these pins are connected on Simple Communication
Interface number 6. The flow charts to initialize this communication is given in figure 8.

The most complex communication protocol, allow to keep pixel of an image, this
communication is an 8 bit parallel communication in 30MHz. One microcontroller’s peripherals allow
to keep data’s automatically. On the RX64M this peripheral, Parallel Data Capture, is setting up as
shown on figure 9.

Figure 10 shows data transfer between camera and the microcontroller. Data’s are saved in a FIFO
memory which is needed to read it at each flag generation. In the interrupt routine it’s necessary to
read the FIFO 8 time when data are available. Details of implementation of this peripheral is given in
annex.



C Start of initialization )

Set the TIE, RIE, TE, RE, TEIE and
CKE[1:0] bits in SCRto 0

Set the I/O port functions

Set the IICSDAS[1:0] and IICSCLS[1:0] bits
in SIMR3 to 11b

Set up the transfer or reception format in
SMR and SCMR

I

l Set the value in BRR

I Set a value in MDDR

Set the values in SEMR, SNFR, SIMR1,
SIMR2, and SPMR

Set the SCR.RE and TE bit to 1 and set the
SCR.TIE, RIE and TEIE bits

Start of transmission or reception

[1

Make /O port settings that allow use (on N-channel
open-drain output pins) of the SSCLn and SSDAn pin
functions.

[2

Place the SSCLn and SSDAn pins in the high-
impedance state until a start condition is to be
generated.
[1]

[3

Set the format for transmission and reception in SMR
and SCMR.
In SMR, set the CKS[1:0] bits to the desired value and

(2] set the other bits to 0.
In SCMR, set the SDIR bit to 1 and the SINV and SMIF
bits to 0.
[3]
[4] Wirite the value for the desired bit rate to BRR.
[4] [5] Wirite the value obtained by correcting a bit rate error in
MDDR. This step is not necessary if the BRME bit in
SEMR is cleared to 0.
[5]
[6] Setthe valuesin SEMR, SNFR, SIMR1, SIMR2, and
SPMR.
[6] In SEMR, set the NFEN bit. Set the NFEN and BRME
bits in SEMR.
In SNFR, set the NFCS[2:0] bits.
[71 In SIMR1, set the IICM bit to 1 and the 1ICDL[4:0] bits
as required.

In SIMR2, set the ICACKT and IICCSC bits to 1 and
the IICINTM bits as required.
In SPMR, set all the bits to 0.

(7

Set the RE and TE bits in the SCR to 1. Then, set the
SCR.TIE, RIE, and TEIE bits (for transmission and
when the SIMR2.IICINTM bit is 1, set the RIE bit to 0).
Setting the TE and RE bits to 1 makes the SSCLn and
SSDAnR pin functions available.

Note:  Set the SCR.RE and TE bits to 0 or 1 at the same time.

Figure 8 Flow 12C communication initialization

[ statofinitalizaton |

| Set the input/output ports. |

| Set the interrupt controller. |

| PCCR1.PCE=0 |
|
Set the PCCRO register. 2]
(PCKOE, PCKDIV[2:0])

[
| PCCRO.PCKE=1 | B3

[ Pccroprst=t  |m

an

No

PCCRO.PRST ==

I Set the VCR and HCR registers. | [5]

Set the PCCRO register.
(VPS, HPS, DFIE, FEIE,
OVIE, UDRIE, VERIE, (6]
HERIE, EDS)

[ End of initialization ]

[1] Disable PDC operation.

[2] Set the frequency division rate of the PCKO register
and enable or disable an output of the PCKO register.
(Set as required.)

[3] Enable a PIXCLK input.

[4] Reset the PDC.

[5] Set the vertical and horizontal capture ranges.

[6] Set the polarity of the VSYNC and HSYNC signals
(VPS, HPS).
Enable/disable an interrupt
(DFIE, FEIE, OVIE, UDRIE, VERIE, HERIE).
Set the endian (EDS).

Figure 9 PDC flow chart initialization




Interrupt | FODEL
>
| Controller PCFEl
}\——o—» PCERI
| E— P >
PCCR1 " ' A
e la
HCR K
e
VCR . »
=T )
> PCSR N = .
————— | .| & 2
> PCMONR "2 a
8 s
: © @
R i PCDR Register Eots E < > 5
: ‘ = &
: 3 T
PIXCLK | H = §
i @ =
VSYNC — |nterface : 22-stage FIFO > 3 > il
HSYNC Controller E (32-bit size) 7 a
PIXD7 t0 ———p
PIXDO \
— \
PCKO < i
Prescaler Peripheral Module Clock B
(PCLKB)

Figure 10 Data flow of PDC



Bibliography
- 0V7670_CMOS.pdf 42p.
0V7670/0V7171 CMOS VGA (640x480) CAMERACHIP with OmniPixel ® Technology

- 0V7670 Implementation Guide (V1.0).pdf 64p.
0OV7670/0V7171 CMOS VGA (640x480) CameraChip Implementation Guide

- SCCBSpec_AN (2.2).pdf 24p
OmniVision Serial Camera Control Bus (SCCB) Functional Specification

- r01uh0377ej0100_rx64m.pdf 2903p.
User’s manual : Hardware

- r20ut2589eg0100_rsk+rx64m_schema 17p.



ANNEX TABLE

PDC implementation flow chart..........cccceeeenveennneee.
PDC implementation initialization code....................

PDC implementation interrupt routine reading FIFO

10



PDC implementation flow chart

Main Routine

and data reception

[

Completion of initial setti

ng

)

| settheDTCorDmMAC. | 1)

| PCCR1.PCE=1

| @

[ Start of data reception ]

-

l Receive data.

-

Interrupt processing
/ Start of frame end
interrupt

[ PCCRIPCE=0 | [6]
I
Clear the Clear the
PCSR.FEF flagto 0. | | PCSR.FEF flag to 0.
l
Completion of frame |
end interrupt
L]
Completion of data Start of error
k reception processing/

~===== DTC/IDMAC ===~

7 ~
Vi A Y
! - \
I Completion of thg 1 o
" DTC or DMAC setting I
1 1
[ > I
1 1
1 1
1 |
1 1
1 1
| - 1
I Transfer the data in the 1
I PCDR register to the [ 1
I destination address. 1
1 1
\ 1
\ 4
\~_______________,I

[1] Setting of the DTC or DMAC:

Set the DTC or DMAC according to the size of the

captured image.
[2] Enabling of PDC operation:

Bl

[

[l

6]

Set the PCE bit in the PCCR1 register to 1 to enable
PDC operation.

Data reception:

Receive the data from the external I/O and wait for
generation of a receive data ready interrupt (DTC/DMAC
startup) or a frame end interrupt.

Transfer by the DTC or DMAC:

Transfer the data in the PCDR register to the destination
address in response to a receive data ready interrupt
(DTC/DMAC startup).

Read the PCDR register in longword access and
transfer 32 bytes of data per receive data ready
interrupt.

Frame end interrupt:

Read the FEMPF flag in the PCSR register and verify
completion of the DTC or DMAC transfer.

If an underrun occurs during DTC or DMAC transfer,
setting of the FEMPF flag may not proceed. When an
underrun occurs, clear the FEF flag to 0 and branch to
the appropriate error processing routine.

Completion of data reception:

After completion of the transfer, clear the PCE bit in the
PCCR1 register to 0, and then clear the FEF flag in the
PCSR register to 0. This completes handling of the
frame end interrupt and data reception.

11



PDC implementation initialization code

void R_PDC_Create()

{

/*Cancel PDC module stop state*/
SYSTEM.PRCR.WORD = OxA50BU;

/* Enable writing to MPC pin function control registers */
MPC.PWPR.BIT.BOWI = OU;
MPC.PWPR.BIT.PFSWE = 1U;

int i;
MSTP( PDC ) = oU;

IR(PDC, PCDFI) = 0U;
IPR(PDC, PCDFI) = 15;
IEN(PDC, PCDFI) = 1U;
/*Set PIXD® & PIXD3 pins*/

PORT1.PMR.BYTE |= OxACU;
MPC.P15PFS.BYTE = Ox1CU;
MPC.P17PFS.BYTE = Ox1CU;

/*Set PIXD4, PIXD5, PIXD6, PIXD7, PIXCLK, HSYNC pins*/
PORT2.PMR.BYTE |= Ox3FU;
MPC.P20PFS.BYTE = 0x1CU;
MPC.P21PFS.BYTE = @x1CU;
MPC.P22PFS.BYTE = @x1CU;
MPC.P23PFS.BYTE = @x1CU;
MPC.P24PFS.BYTE = 0x1CU;
MPC.P25PFS.BYTE = @x1CU;

/*Set VSYNC & PCKO pins*/

PORT3.PMR.BYTE |= @x0CU;
MPC.P32PFS.BYTE = 0Ox1CU;
MPC.P33PFS.BYTE = 0Ox1CU;

/*Set PIXD1, PIXD2 pins */
PORT8.PMR.BYTE |= @xCeU;
MPC.P86PFS.BYTE = @x1CU;
MPC.P87PFS.BYTE = @x1CU;

/*Disable Operation on PDC*/
PDC.PCCR1.LONG = 0U;

/*Setting PCLKO*/
PDC.PCCRO.BIT.PCKOE = 1U; //enable PCKO
PDC.PCCRO.BIT.PCKDIV = 1U; //Divide PCLKB by 4, PCKO = 15MHz

/*Enable PIXCLK input*/
PDC.PCCRO.BIT.PCKE = 1;

/*Reset the PDC*/
PDC.PCCRO.BIT.PRST = 1;
while(PDC.PCCR@.BIT.PRST);

12



/*Set vertical and horizontal capture range*/
PDC.VCR.BIT.VST = @QU;

PDC.VCR.BIT.VSZ = 480; // 1E@h = 480
PDC.HCR.BIT.HST = 0U;
PDC.HCR.BIT.HSZ = 640; // 0280h = 640

/*Set the polarity of the VSYNC and HSYNC signals*/
PDC.PCCRO.BIT.VPS = 1U; //active low
PDC.PCCRO.BIT.HPS = 0U; //active high

/*Enable end frame interrupt and data ready interrupt*/
PDC.PCCRO.BIT.DFIE = 1U;
PDC.PCCRO.BIT.FEIE 1U;
PDC.PCCRO.BIT.OVIE 1U;
PDC.PCCRO.BIT.UDRIE = 1U;
PDC.PCCRO.BIT.VERIE = 1U;
PDC.PCCRO.BIT.HERIE = 1U;

/*Set Little Endian*/
PDC.PCCRO.BIT.EDS = 0U;

MPC.PWPR.BIT.PFSWE = 0U;
MPC.PWPR.BIT.BOWI = 1U;

/* Enable protection */
SYSTEM.PRCR.WORD = @xA500U;

for(i = 0; i < 240; i++)
{

}

image_cam[i] = &Pixel_cam[i*320];

PDC implementation interrupt routine reading FIFO

void R_PDC_Data_Ready_Interrupt(void)

{
static uint32_t value = 9;
Pixel cam[value++].data = PDC.PCDR.LONG;
Pixel cam[value++].data = PDC.PCDR.LONG;
Pixel cam[value++].data = PDC.PCDR.LONG;
Pixel cam[value++].data = PDC.PCDR.LONG;
Pixel cam[value++].data = PDC.PCDR.LONG;
Pixel cam[value++].data = PDC.PCDR.LONG;
Pixel cam[value++].data = PDC.PCDR.LONG;
Pixel cam[value++].data = PDC.PCDR.LONG;
value %= 76800;

}

13



