POLYTECH’
CLERMONT-FERRAN

==

APPLICATION NOTE

SPEEX CODEC
IMPLEMENTATION
ON THE RPB RX210

Author: César MAKAMONA MBUMBA SHEALTIEL

Abstract

Codec is a compound word derived from Coder-decoder or Compressor-decompressor.
A codec is software, a program, or hardware, a device, process used to encode/compress and
decode/decompress data stream and signal. In one hand, it encodes data stream or signal for
transmission, storage or encryption. In the other hand, it decodes for editing or playback.

Depending on the application aim, bitrate, time computing, audio quality ... different
algorithms or diagrams are used. A Codec can be used in media transmission on Internet,
telephony, videoconferencing ...

This application note describes how to build a VVocoder application by implementing the
Speex codec on the RX210 microcontrollers.

Contents

Y o 1=T <) g o Yo L= o 1
[l HardWare OVEIVIEW........cciiiiiiiiiiiiiiiiieiceeeeeeeeeeeeeeeeeeeeeeee e e e s e e e e e eseeseeeeeeeeseeeseeees 2
[lI. Speex implementation ... e 3
R = Tl Yo 11 = PPN 3
2R 1= Tolo o [1o Y- S 5
3. OPIMIZATION ceeieiiiiie et e e e e e e e aeaas 6
AV Ve ToloTo [T o o] o] I Tot- 1 [o o [7
1. Application reqUIrEMENtSccoeeeeeeieeiicee e 7
2. SPEEX ENCOAEI/PIAYEN c.uveveeeee oottt 10
CONCIUSION . s s e s e e e e e e e e e e e s e e e e s e e e e e eeesaeaeenns 12

List of figures

Figure 1 : RX210 fRALUIES ...cccuvvee ettt et e 2
Figure 2 : Narrowband mode, Quality vs Bitrate...........ccccoceeevvveeeecieeeeiee e, 3
Figure 3 : Project creation on HEW, with GNURX compiler.........ccccceevveeenneen. 7
Figure 4 : Running demonstration projects (1)cccoeevveeerieeeeriveeeriieeeeiiee e 8
Figure 5 : Running demonstration projects (2)ccccoeevveeeeceeeercieeenieeeeeee e, 8
Figure 6 : Adding debugging mode Session (1)ceevvveeeriveeeriieeeniiee e 9
Figure 7 : Adding debugging mode SesSioN (2)coevvvveeeriveeiriieeeniiee e 9
Figure 8 : Adding debugging mode Session (3)cceevveeevcieeeriiieeeiee e 10
Figure 9 : Speex Encoder/Player fIoWcccooviiiiiiiiie e 10

Figure 10 : CPU load, Encoder (left) and Player (right).........cccovveevevieenninenee. 11

List of tables

Table 1 : Redefinition of SPeex/OgQ tYPEScccvveveeeieeeeieee et 4
Table 2 : Speex program arChiteCtUIeeevcuveeeeiieeeeiee e 6
Table 3 : Speex implementation reqUIremMeNtS.........cveeeevveeerieeeerceee e e, 11

Speex Codec

Speex is an open source, patent and royalty-free software codec designed and optimized for
speech. It based on the CELP (Code Excited Linear Prediction, based itself in Linear
Prediction Code) and was designed in particular for voice over IP. So it can encode voice at
bitrates ranging from 2 to 44 kbps.

Here a summary Speex features:

>

Y YV V

YV VYV

>

Resampler

Fixed point implementation

Intensity Stereo encoding

Encoding/Decoding sampling rate : Narrowband (8 kHz), Wideband (16 kHz) and
Ultra-wideband (32 kHz)

Voice activity detection (VAD)

Discontinuous transmission (DTX)

Variable bitrate operation (VBR)

Packet loss concealment

Noise suppression

Speex has some features that are absent in some speech codecs, such as VBR, DTX and
multiple sampling rates in the same bitstream and it designed to run on different platforms,
software and hardware. For further details about Speex codec, please refer to the Speex
website, www.speex.org, and Speex manual. 1.2rcl is the release used for this application

note.

January 2013 SPEEX CODEC Page 1

http://www.speex.org/

Il. Hardware overview

To build a typical vocoder application, two stages are needed: speech processing and audio
stream input/output. In this application note, the Speex codec is the first one and the RPB
RX210 board is the second one.

The RPB RX210 microcontroller integrates the RX210 CPU, which is a 32 bits CPU without
a Floating Point Unit (FPU). It can process MAC operations on 48 bits and 78 DMIPS at 50
MHz (maximum operating frequency) and has several peripherals as shown on figure 1.

In this application note, the embedded 12-bits resolution ADC, input audio stream, and 10-
bits DAC, output audio stream, are used, as well as 8-bits Timer and DMAC.

@\
R
RX210

Zero-Wait Flash
up to 1MB

SRAM
up to 128KB

Data Flash
64KB

Timers

Event Link
Controller

Multi-pin
Function Cont.

Data Mgmt.
DTC/DMA

Interrupt Cont.
16 levels 9 pins

Clocks
OSC PLL IRC

POR/LVD

Safety
CAC DOC CRC

MTU2
16-bit 6 ch

TMR
16-bit 4 ch

CcMT
16-bit 4 ch

WDT

I-WDT

RTC
Calendar

7 ch
SPI

External Bus

GPIO

Figure 1 : RX210 features

Comparator
4ch

ADC
12-bit 16 ch

DAC
10-bit 2 ch

Temp Sensor

For more information about the RX210 microcontrollers, please refer to the Renesas website,
http://www.renesas.eu/products/mpumcu/rx/rx200/rx210/index.jsp,
manual.

and RX210 hardware

January 2013

SPEEX CODEC

Page 2

http://www.renesas.eu/products/mpumcu/rx/rx200/rx210/index.jsp

[11. Speex implementation

This part describes necessary modifications to operate on Speex codec library, to port Speex
codec on platforms that were not designed for. However, these modifications depend on the
application needs: compression, CPU load, audio quality ...

In this application note, the porting is based on Fixed-point, CPU load and audio quality. In
light of these needs, the Narrowband mode is used to meet the lesser CPU load, since it
requires less data processed than others modes.

The Ogg library is not provided with Speex library. So, get the Ogg library on www.xiph.org.
The release used in this application note is 1.3.0.

1. Encoding
To get Speex operating on Fixed-point, include in arch.h file, following macros:

o #define FIXED_POINT
e #define USE_KISS_FFT
o #define DISABLE_FLOAT_API
o #define DISABLE_VBR

Running on Fixed-point implies to disable VBR.

| Mode ‘ Quality | Bit-rate (bps)] mflops | Quality/description |
0 - 250 0 No transmussion (DTX)
1 0 2.150 6 Vocoder (mostly for comfort noise)
2 2 5,950 9 Very noticeable artifacts/noise, good mtelligibility
3 3-4 8.000 10 Artifacts/noise sometimes noticeable
+ 5-6 11.000 14 Artifacts usually noticeable only with headphones
5 1-8 15,000 11 Need good headphones to tell the difference
6 9 18.200 17.5 | Hard to tell the difference even with good headphones
1 10 24 600 145 Completely transparent for voice, good quality music
8 1 3.950 10.5 Very noticeable artifacts/noise. good mtelligibility

Figure 2 : Narrowband mode, Quality vs Bitrate

Quality is a parameter used to control bitrate. Referring to figure 2, in order to get a low CPU
load with understandable audio output quality, quality is set to 4. In the same way,
the complexity parameter is set to 1. With this setting, the ratio compression is 16:1.

January 2013 SPEEX CODEC Page 3

http://www.xiph.org/

Then all features that are unused for the application are removed, that implies removing
relative files, functions and variables:

e VBR

e Stereo

e VAD

e DTX

e Preprocessor
e Resampler

e Average Bitrate (ABR)
e Perceptual enhancement (used only by decoder)
e Acoustic Echo Canceller

As shown below, Speex is designed to operate with audio files, specially, raw, .wav and .spx
ones. To run in real time on the board, files are replaced by buffers.

Encoder

Algorithm (simplified) of Speex source code

* Reading the inputfile : wav or raw

* Encoding

» Writing the output file : spx

Decoder

Reading the inputfile : .spx

Decoding

Writing the output file : wav or raw

So, reading/writing the input/output file is modified accordingly: read samples and
oe_write_page functions are main ones. At this step, make sure to modify all others relative
functions and remove functions such as exit, printf, fprintf ... Also remove Windows
execution options relatives. Redefine Ogg and Speex types according to the platform used
(Table 1), replace srand and rand functions by speex_rand function and replace fread and
fwrite functions by memcpy one.

typedef _SWORD 0gg_intl6 t; typedef signed char Spx_int8_t;
typedef _UWORD 0gg_uintl6_t; typedef unsigned char spx_uint8_t;
typedef _SINT 0gg_int32_t; typedef signed short spx_intl6 t;
typedef _UINT 0gg_uint32_t; typedef unsigned short spx_uintl6 t;
typedef _SQWORD 0gg_int64 t; typedef signed int spx_int32_t;
typedef UQWORD ogg uint64 t; typedef unsigned int SpX_uint32_t;

Table 1 : Redefinition of Speex/Ogg types

January 2013

SPEEX CODEC

Page 4

These functions must be modified:

e speex_encoder_ctl

e speex_encode_int (the main encoding function)
e speex_encoder_destroy

e speex_bits_destroy

e 0gg_stream_clear

To avoid strange behaviors, especially in temporary memory allocation, modify the following
functions:

e speex_alloc

e speex_free

e speex_realloc

e speex_alloc_scratch

2. Decoding

Fixed-point is managed as in encoding. Quality, complexity and Bitrate parameters are not set
here. Do not remove perceptual enhancement and when removing Stereo relatives, pay
attention, it quiet complicate in decoding.

These functions must be modified:

e process_header

e speex_decoder_ctl

e speex_decode_int (the main decoding function)
e speex_decoder_destroy

e speex_bits_destroy

e 0gg_sync_clear

Remain actions, modifications and suppressions, are made as in encoding.

January 2013 SPEEX CODEC Page 5

3. Optimization

1 : User functions Level

2 : Interface functions Level

Table 2 : Speex program architecture

In both encoding and decoding, in some cases, it better to omit the interface level in order to
optimize CPU load. Function such as nb_encode (level 3) can be directly called, by replacing
speex_encode_int, in leve 1.

Always in reducing CUP load, ideally, these functions should be written in assembly:

filter_mem16()
iir_mem16()
vq_nbest()
pitch_xcorr()
interp_pitch()

Remind that only one mode, Narrowband, is used. So, files, functions, structures, tables and
variables relative to Wideband and Ultra-wideband can be removed to optimize code size.
In the same way, include #define VAR_ARRAYS or USE_ALLOCA in arch.h file.

If the encoder and decoder are two separated modules, functions, tables, structures and
variables which are used by decoder should be removed in encoder and vice versa.

January 2013 SPEEX CODEC Page 6

V. Vocoder application

The vocoder is a speech processing application that provides human voice treatment such as
encoding, decoding, filtering and amplifying. In this application note, the vocoder application
is the Encoder/Player.

1. Application requirements

To buil this application, it requires to get:

e RPB RX210 board which integrate a Segger debugger (J-Link 4.38)
WwWw.renesas.eu/products/tools/introductory evaluation tools/renesas promotional b
oards/RPBRX210/rpbrx210.jsp

e |Installation CD, delivered with the board, which contains debugger drivers and HEW
installation

e High-performance Embedded Workshop (HEW), a RENESAS IDE for configuring,
loading and debugging Renesas microcontrollers. The release used is 4.09.00.007.

e KPIT GNURX 12.02, an open-source and free-royalty compiler. For further details
refer to www.kpitgnutools.com

e Audacity 2.0.2, an open-source and free-royalty audio recording and editing software.
It is used, in the vocoder application, to record audio stream in correct data format.
Downloadable at http://audacity.sourceforge.net/

In the project creation on HEW, using GNURX compiler, do not check the option surrounds
on figure 3.

N e 2/ o

Specify additional options:

Drata endian: Little endian data -

— Select Options

[~ Dis=kle generation of B hardware FFPL
instructions

I Make the double data type 64-bits wide
||— Generate assembler output compatible

with Renesas's AS100 assembler

I Ferform extra buildtime checks an
project code and adwise how to
Improwe it

Select library:
& Optimized o MNewlib
Use these for further optimization.

< Back I Mext > I Finish I Cancel I
Figure 3 : Project creation on HEW, with GNURX compiler

January 2013 SPEEX CODEC Page 7

http://www.renesas.eu/products/tools/introductory_evaluation_tools/renesas_promotional_boards/RPBRX210/rpbrx210.jsp
http://www.renesas.eu/products/tools/introductory_evaluation_tools/renesas_promotional_boards/RPBRX210/rpbrx210.jsp
http://www.kpitgnutools.com/
http://audacity.sourceforge.net/

Then copy the content of rx200.h file from C:\Program Files\Renesas\Hew\System\Pg\KPIT
GNURX-ELF\GNURX _Info\Generate\iodefine to the iodefine.h generated in the project
directory.

Make sure to have Segger_JLink.hsf or/and JLinkOB.hsf files, which permit to debug and
write the On-chip memory respectively, in the project directory. Run demonstration projects
to get these files. Steps below indicate how to run demonstration projects and to add session
for debugging mode or write On-chip mode.

TS o

Projects I

Project Types Workspace Mame:

FH Application Idemo|
Demonstration
77 Empty Application Project Name:

Libra

Idemo

Directory:

IC:\WorkSpace\demo Browse. .. |
CPU family:

|Rx =1

Tool chain:
IRenesasRXStandard VI

Properies... |

OK I Annuler

Figure 4 : Running demonstration projects (1)

Select Renesas tool chain and RPBR210 then press OK.

“What type of project do wou want to generate?

1 @DW Fower Demonstration
ow power modes praject.
2 ‘ : }%dvanced Debug Tutorial
utorial for adwanced debug features.

< Back | Mext > | Einish | Cancel

Figure 5 : Running demonstration projects (2)

Select 1 to get write On-chip mode file and 2 the debugging mode one.

January 2013 SPEEX CODEC Page 8

¥ Speex_Decoder GNU - High-performance Embedded Workshop - [Decodere] = . " b= | (B

< File Edit View Project Build Debug Setup Tools Test Window Help [-]=] =]
DBEd &5 a6 @ b mn <8 & ”Iﬁ 5 B % [[Debug o |[DefaSesmien =] 2t |
SET
E@ Speex_Decoder_GNU - Line 5. Source - |
= i Speex Decoder GNU | 111 int packet_no; j
=3 C headerfile 112 if (stream init == 0)
=] interrupt_handlers.h 113 {
=] iodefine h 114 ogg stream init(&os, ogg page serialno (&og));
gwpedeﬁneh 115 stream_init = 1;
= E’eexﬁeade’s — 116 crossing flag = 1;
..... arch) _
[cb_searchh iy '
""" [2 Decoderh iy e) .
13 fiters.h 119 /** pdd page to.the bitstream **/ J
----- [2 fixed_generich i1z0 ogg_stream pagein(&os, &og);
% Ipc.h 121 page_nb_packets = ogg_page_packets (&og) ;
Isp.h 122
""" 2 ph 123 /*% Extract all available packsts %%/
=) math_appraxh 124 packet no = 0;
""" % mb”daT hh 125 while (l!eos && ogg stream packetout(&os, &op) == 1)
nb_celp - =
126 {
..... h)
% Zg?suppomh 127 if (op.bytes>=5 && !memcmp(op.packet, "Speex", 5))
Q os_types.h 128 { =
_____ B L lsoh - 1m0 mmany mawialna = An cawialaa-
d | auant Iso | D 4 | | »
5 @W---IETEW- [van.. | Bl 1ot .+ Speex_D..J «+ speex_ty...] «5 05_types.h <+ Decoderc

HeoLotalat|Ri8t|7|md|?

l [b
Build , Debug)\ Find in Fies 1)\ Find in Flles 2)\ Macro A Test)\ Version Control ,{

Ready =4 7| |Defaultl deskiop [Read-write [1/254 1 s |

Figure 6 : Adding debugging mode session (1)

Notice that it is impossible to connect the board with default session

ﬁx Speex_Decoder_GNU - High-performance Embedded Workshop - [Decoderc] = = = = = 4 - - y - @I@u
<> File Edit View Project Build [Debug| Setup Tools Test Window Help [_[=]x]
JJ DEEd 8|)=r|s JJ Synchronized Debugging... F & [g 5 |[Debug] |[Deteutzession =l|A ‘
|
= S D der_GNU R cket no; zl
Eapii;d:f;e - Debug Settings... ream:init == 0)
=] interrupt_handlers.h _— .
=] iodefine.h Eff Reset CPU t init ial: ;
g typedaﬁ;mh 5 rga]}'tiuul(&os, ogg_page serialno(sog)):
co c- feam_init = 1;
= {3 Speex_Headers 1 Bl Go) j ssing flag = 1;
""" % archh Reset Go Shift+F5 -
e g o
..... 3 fitersh FE— d page to_the bitstream **/ J
[2) fxed_geneiich B Go To Curso ream_pagein(&os, &og);
----- % Ipch .. Set PC To Curso \b_packets = ogg_page packets(&og);
lsph Run...
""" 2 iph P L . ftract all available packets **/
[2) math_approxh .. Display PC Cirl+Shift+Y 1o = 0:
_____ 5 nmbﬂ_‘ia;phh T Step In F11 (!eos && ogg_stream packetout(&os, &op) == 1)
h T Step Over =0
..... % zggsuppumh W3y 0z L (op.bytes>=5 && !memcmp (op.packet, "Speex", 3))
2 os_ypesh {P Step Out Shift+F11
..... 3 qua) e rmns mawialna — am eawialnas hd
. | [0 quant Isoh | _}[Step... | _>'_|
Step Mode L4

_@m___lﬁrgw_ I€|Navi.. Ir pes.h < Decoderc
&5 Halt Program
HoLoraar|2igt| 2|
Initialize -
_® Copnect

M Disconnect

< I
4Tyl auild [nahia b Find in Filbe

n cantral 1

gure 7 : Adding debugging mode session (2)

Select Debug —>Debug Sessions, browse and add Segger_JLink.hsf. Then change the current
session to Segger_JLink.

January 2013 SPEEX CODEC Page 9

¥ ADC12 - High-performance Embedded Workshop - [ADC12.] »r W * e 0 X |

< File Edit View Project Build Debug Setup Tools Test Window Help [-]=] =]
DSWE@ &5 0|6 || @ omsmmn <% & 6|8 < 6% [B e —
OFEn: MR |[FREBERTED
I
w . Line S.| Source
E@ADC12 - 1 f"k'k‘k‘k*'k'l"k‘k**********************'k‘k‘k'k'k‘k‘k*'k'k‘k‘k'k'l"k‘k************************f’ N
=43 C headerfile 2 /% =/
=1 hardware_s¢ 3 /* FILE :ADC12.c */
B intermupt_har 4 /* DATE :Mon, Oct 29, 2012 */
= iodsfine.n 5 /* DESCRIPTION :Main Program */
(=l sinus_conw.t 6 | |/x cpu TveE :0ther */
=] ypedefine h 2 I 5/
=] wav_table.h - - - .
-3 C source file 8 /* This file is generated by KPIT GNU Project Generator. */
ADC1Zc 9| /¥ */
hardware,se 10 ’i'tt\k\kit***tt\k\ktt\k\ktt\k\kitk\k*t*ﬁr\ktt\k\ktt\k\kitk\k*t***tt*ktt*ktt*kitkk*t*k*ttk’f
interrupt_har 11
vector_table 12 #include <stdio.h>
=3 Preprocess Asse 13 #include "hardware_setup.h"
. resel_progre 14 #include "sinus_conv.h"
Download modk 15 #include "wav_table.h"
=3 Dependencies 16 -
hardware_s¢ 4 | _'LI
= . q 4
[
_@pﬂ IERE=] = ADC12c |.;hardware. 2+ sinus_co... | <= hardware...| =2 wav_tab..
Horotalar|2igt|7|Ed]|?
-
< L1} 3
Build , Debug)\ Find in Fies 1)\ Find in Flles 2)\ Macro A Test)\ Version Control ,{

Ready =4 |Defaultl deskiop [Read-write [1/56 1 s |

Figure 8 : Adding debugging mode session (3)

Now the program can be load on the board.

2. Speex Encoder/Player

For the following, it is supposed that Speex source code was already modified and tested, to
be ported on the target. So, only hardware configuration will be detailed. This application is
composed of two modules: Encoder and Player, as shown on figure 4.

Input audio stream
(Analog)

Figure 9 : Speex Encoder/Player flow

January 2013 SPEEX CODEC Page 10

The Encoder is composed of ADC, 8-bits Timer, DMAC, UART and Speex encoding process.
The Timer triggers the DMAC at 8 kHz (Narrowband), which triggers the ADC to transfer
data in Input buffers. The DMAC launch encoding process when buffer is full. Two buffers of
16 bits x 160, according to the Speex settings describes above, are used as input cyclic buffer
and one frame represents 20 ms (160 samples x 125 ps) of audio stream.

One frame is compressed to 20 Bytes (ratio compression 16:1) and data is packed before
being sent. Also, two buffers of 8 bits x 300, to meet the Player configuration, are used as
output cyclic buffer. Another DMAC channel is used to lead data to the UART module.

The same configuration is met in the Player module but in reverse, with input and output
buffers sizes, 8 bits x 300 and 16 bits x 300, respectively.

Important to mention that RPB RX210 has not embedded pre-amplification stage, to capture

input audio stream, and amplification stage to play back output audio stream. So, related
board/stage or PC connectivity can be used. The table 3 shows the Speex implementation

requirements.

Encoding 50 %
Decoding 57 3 10 %
Encoding

+ 88
Décoding

Table 3 : Speex implementation requirements

The memory footprints are calculated with hardware configuration and the CPU load with an
approximate method as shown on figure 10. When Encoding and Decoding processes are in
the same module, the RAM footprint and CPU load depend on the type of application.

Save | | : Save
o P— 2 q Image t : . - |1 Image ’
{ Encoding frame n End of Encodage t . End of Decoding mag
! 1 Collecting frame n+1 & . Collecting trame n+1 | [=r=—"" ! . Playing frame n-1 S E—
f — — . Ink Saver 7| Decoding frame n - i |Ink Saver
[: On | Playing frame n-1 On
: Destination P : Destination
Becoo oty tccectocostocetobocotosocporhotorecf otOl NNNENRNEN @ lecosf i WMievosioanciannatiniiiniasiohocieces 57 et
USB | B USB
| DMA } b e o ingerrupt fof iy
-« Interrupt L Save cach 20 ms Save
cach 20 ms
; — .
File t -~ ; File
: Utilities { : Utilities

Figure 10 : CPU load, Encoder (left) and Player (right)

January 2013 SPEEX CODEC Page 11

Conclusion

Dedicated to speech encoding and decoding, Speex is a free audio codec which provides
specific features, absent in others speech codecs, and a good quality of sound with a high
level of compression. That ranks it as a high-performance solution for application using voice
recorder or message playback, such as building and home safety systems, intercoms,
answering machines, smart appliances, voice recorders or walkie-talkies.

January 2013 SPEEX CODEC Page 12

