

APPLICATION NOTE

SPEEX CODEC

IMPLEMENTATION
ON THE RPB RX210

Author: César MAKAMONA MBUMBA SHÉALTIEL

January 2013

Abstract

Codec is a compound word derived from Coder-decoder or Compressor-decompressor.

A codec is software, a program, or hardware, a device, process used to encode/compress and

decode/decompress data stream and signal. In one hand, it encodes data stream or signal for

transmission, storage or encryption. In the other hand, it decodes for editing or playback.

Depending on the application aim, bitrate, time computing, audio quality … different

algorithms or diagrams are used. A Codec can be used in media transmission on Internet,

telephony, videoconferencing …

This application note describes how to build a Vocoder application by implementing the

Speex codec on the RX210 microcontrollers.

Contents

I. Speex Codec ... 1

II. Hardware overview .. 2

III. Speex implementation .. 3

1. Encoding ... 3

2. Decoding ... 5

3. Optimization ... 6

IV. Vocoder application .. 7

1. Application requirements ... 7

2. Speex Encoder/Player ... 10

Conclusion .. 12

List of figures

Figure 1 : RX210 features .. 2

Figure 2 : Narrowband mode, Quality vs Bitrate .. 3

Figure 3 : Project creation on HEW, with GNURX compiler 7

Figure 4 : Running demonstration projects (1) ... 8

Figure 5 : Running demonstration projects (2) ... 8

Figure 6 : Adding debugging mode session (1) .. 9

Figure 7 : Adding debugging mode session (2) .. 9

Figure 8 : Adding debugging mode session (3) .. 10

Figure 9 : Speex Encoder/Player flow .. 10

Figure 10 : CPU load, Encoder (left) and Player (right) 11

List of tables

Table 1 : Redefinition of Speex/Ogg types ... 4

Table 2 : Speex program architecture ... 6

Table 3 : Speex implementation requirements .. 11

January 2013 SPEEX CODEC Page 1

I. Speex Codec

Speex is an open source, patent and royalty-free software codec designed and optimized for

speech. It based on the CELP (Code Excited Linear Prediction, based itself in Linear

Prediction Code) and was designed in particular for voice over IP. So it can encode voice at

bitrates ranging from 2 to 44 kbps.

Here a summary Speex features:

 Resampler

 Fixed point implementation

 Intensity Stereo encoding

 Encoding/Decoding sampling rate : Narrowband (8 kHz), Wideband (16 kHz) and

Ultra-wideband (32 kHz)

 Voice activity detection (VAD)

 Discontinuous transmission (DTX)

 Variable bitrate operation (VBR)

 Packet loss concealment

 Noise suppression

Speex has some features that are absent in some speech codecs, such as VBR, DTX and

multiple sampling rates in the same bitstream and it designed to run on different platforms,

software and hardware. For further details about Speex codec, please refer to the Speex

website, www.speex.org, and Speex manual. 1.2rc1 is the release used for this application

note.

http://www.speex.org/

January 2013 SPEEX CODEC Page 2

II. Hardware overview

To build a typical vocoder application, two stages are needed: speech processing and audio

stream input/output. In this application note, the Speex codec is the first one and the RPB

RX210 board is the second one.

The RPB RX210 microcontroller integrates the RX210 CPU, which is a 32 bits CPU without

a Floating Point Unit (FPU). It can process MAC operations on 48 bits and 78 DMIPS at 50

MHz (maximum operating frequency) and has several peripherals as shown on figure 1.

In this application note, the embedded 12-bits resolution ADC, input audio stream, and 10-

bits DAC, output audio stream, are used, as well as 8-bits Timer and DMAC.

Figure 1 : RX210 features

For more information about the RX210 microcontrollers, please refer to the Renesas website,

http://www.renesas.eu/products/mpumcu/rx/rx200/rx210/index.jsp, and RX210 hardware

manual.

http://www.renesas.eu/products/mpumcu/rx/rx200/rx210/index.jsp

January 2013 SPEEX CODEC Page 3

III. Speex implementation

This part describes necessary modifications to operate on Speex codec library, to port Speex

codec on platforms that were not designed for. However, these modifications depend on the

application needs: compression, CPU load, audio quality …

In this application note, the porting is based on Fixed-point, CPU load and audio quality. In

light of these needs, the Narrowband mode is used to meet the lesser CPU load, since it

requires less data processed than others modes.

The Ogg library is not provided with Speex library. So, get the Ogg library on www.xiph.org.

The release used in this application note is 1.3.0.

1. Encoding

To get Speex operating on Fixed-point, include in arch.h file, following macros:

 #define FIXED_POINT

 #define USE_KISS_FFT

 #define DISABLE_FLOAT_API

 #define DISABLE_VBR

Running on Fixed-point implies to disable VBR.

Figure 2 : Narrowband mode, Quality vs Bitrate

Quality is a parameter used to control bitrate. Referring to figure 2, in order to get a low CPU

load with understandable audio output quality, quality is set to 4. In the same way,

the complexity parameter is set to 1. With this setting, the ratio compression is 16:1.

http://www.xiph.org/

January 2013 SPEEX CODEC Page 4

Then all features that are unused for the application are removed, that implies removing

relative files, functions and variables:

 VBR

 Stereo

 VAD

 DTX

 Preprocessor

 Resampler

 Average Bitrate (ABR)

 Perceptual enhancement (used only by decoder)

 Acoustic Echo Canceller

As shown below, Speex is designed to operate with audio files, specially, raw, .wav and .spx

ones. To run in real time on the board, files are replaced by buffers.

So, reading/writing the input/output file is modified accordingly: read_samples and

oe_write_page functions are main ones. At this step, make sure to modify all others relative

functions and remove functions such as exit, printf, fprintf … Also remove Windows

execution options relatives. Redefine Ogg and Speex types according to the platform used

(Table 1), replace srand and rand functions by speex_rand function and replace fread and

fwrite functions by memcpy one.

typedef _SWORD ogg_int16_t;

typedef _UWORD ogg_uint16_t;

typedef _SINT ogg_int32_t;

typedef _UINT ogg_uint32_t;

typedef _SQWORD ogg_int64_t;

typedef _UQWORD ogg_uint64_t;

typedef signed char spx_int8_t;

typedef unsigned char spx_uint8_t;

typedef signed short spx_int16_t;

typedef unsigned short spx_uint16_t;

typedef signed int spx_int32_t;

typedef unsigned int spx_uint32_t;

Table 1 : Redefinition of Speex/Ogg types

January 2013 SPEEX CODEC Page 5

These functions must be modified:

 speex_encoder_ctl

 speex_encode_int (the main encoding function)

 speex_encoder_destroy

 speex_bits_destroy

 ogg_stream_clear

To avoid strange behaviors, especially in temporary memory allocation, modify the following

functions:

 speex_alloc

 speex_free

 speex_realloc

 speex_alloc_scratch

2. Decoding

Fixed-point is managed as in encoding. Quality, complexity and Bitrate parameters are not set

here. Do not remove perceptual enhancement and when removing Stereo relatives, pay

attention, it quiet complicate in decoding.

These functions must be modified:

 process_header

 speex_decoder_ctl

 speex_decode_int (the main decoding function)

 speex_decoder_destroy

 speex_bits_destroy

 ogg_sync_clear

Remain actions, modifications and suppressions, are made as in encoding.

January 2013 SPEEX CODEC Page 6

3. Optimization

Table 2 : Speex program architecture

In both encoding and decoding, in some cases, it better to omit the interface level in order to

optimize CPU load. Function such as nb_encode (level 3) can be directly called, by replacing

speex_encode_int, in leve 1.

Always in reducing CUP load, ideally, these functions should be written in assembly:

 filter_mem16()

 iir_mem16()

 vq_nbest()

 pitch_xcorr()

 interp_pitch()

Remind that only one mode, Narrowband, is used. So, files, functions, structures, tables and

variables relative to Wideband and Ultra-wideband can be removed to optimize code size.

In the same way, include #define VAR_ARRAYS or USE_ALLOCA in arch.h file.

If the encoder and decoder are two separated modules, functions, tables, structures and

variables which are used by decoder should be removed in encoder and vice versa.

January 2013 SPEEX CODEC Page 7

IV. Vocoder application

The vocoder is a speech processing application that provides human voice treatment such as

encoding, decoding, filtering and amplifying. In this application note, the vocoder application

is the Encoder/Player.

1. Application requirements

To buil this application, it requires to get:

 RPB RX210 board which integrate a Segger debugger (J-Link 4.38)

www.renesas.eu/products/tools/introductory_evaluation_tools/renesas_promotional_b

oards/RPBRX210/rpbrx210.jsp

 Installation CD, delivered with the board, which contains debugger drivers and HEW

installation

 High-performance Embedded Workshop (HEW), a RENESAS IDE for configuring,

loading and debugging Renesas microcontrollers. The release used is 4.09.00.007.

 KPIT GNURX 12.02, an open-source and free-royalty compiler. For further details

refer to www.kpitgnutools.com

 Audacity 2.0.2, an open-source and free-royalty audio recording and editing software.

It is used, in the vocoder application, to record audio stream in correct data format.

Downloadable at http://audacity.sourceforge.net/

In the project creation on HEW, using GNURX compiler, do not check the option surrounds

on figure 3.

Figure 3 : Project creation on HEW, with GNURX compiler

http://www.renesas.eu/products/tools/introductory_evaluation_tools/renesas_promotional_boards/RPBRX210/rpbrx210.jsp
http://www.renesas.eu/products/tools/introductory_evaluation_tools/renesas_promotional_boards/RPBRX210/rpbrx210.jsp
http://www.kpitgnutools.com/
http://audacity.sourceforge.net/

January 2013 SPEEX CODEC Page 8

Then copy the content of rx200.h file from C:\Program Files\Renesas\Hew\System\Pg\KPIT

GNURX-ELF\GNURX_Info\Generate\iodefine to the iodefine.h generated in the project

directory.

Make sure to have Segger_JLink.hsf or/and JLinkOB.hsf files, which permit to debug and

write the On-chip memory respectively, in the project directory. Run demonstration projects

to get these files. Steps below indicate how to run demonstration projects and to add session

for debugging mode or write On-chip mode.

Figure 4 : Running demonstration projects (1)

Select Renesas tool chain and RPBR210 then press OK.

Figure 5 : Running demonstration projects (2)

Select 1 to get write On-chip mode file and 2 the debugging mode one.

1

2

January 2013 SPEEX CODEC Page 9

Figure 6 : Adding debugging mode session (1)

Notice that it is impossible to connect the board with default session

Figure 7 : Adding debugging mode session (2)

Select Debug Debug Sessions, browse and add Segger_JLink.hsf. Then change the current

session to Segger_JLink.

January 2013 SPEEX CODEC Page 10

Figure 8 : Adding debugging mode session (3)

Now the program can be load on the board.

2. Speex Encoder/Player

For the following, it is supposed that Speex source code was already modified and tested, to

be ported on the target. So, only hardware configuration will be detailed. This application is

composed of two modules: Encoder and Player, as shown on figure 4.

Figure 9 : Speex Encoder/Player flow

January 2013 SPEEX CODEC Page 11

The Encoder is composed of ADC, 8-bits Timer, DMAC, UART and Speex encoding process.

The Timer triggers the DMAC at 8 kHz (Narrowband), which triggers the ADC to transfer

data in Input buffers. The DMAC launch encoding process when buffer is full. Two buffers of

16 bits x 160, according to the Speex settings describes above, are used as input cyclic buffer

and one frame represents 20 ms (160 samples x 125 µs) of audio stream.

One frame is compressed to 20 Bytes (ratio compression 16:1) and data is packed before

being sent. Also, two buffers of 8 bits x 300, to meet the Player configuration, are used as

output cyclic buffer. Another DMAC channel is used to lead data to the UART module.

The same configuration is met in the Player module but in reverse, with input and output

buffers sizes, 8 bits x 300 and 16 bits x 300, respectively.

Important to mention that RPB RX210 has not embedded pre-amplification stage, to capture

input audio stream, and amplification stage to play back output audio stream. So, related

board/stage or PC connectivity can be used. The table 3 shows the Speex implementation

requirements.

Functions ROM

kBytes

RAM

kBytes

CPU load

50 MHz

Encoding 68 5 50 %

Decoding 57 3 10 %

Encoding

+

Décoding

88

Table 3 : Speex implementation requirements

The memory footprints are calculated with hardware configuration and the CPU load with an

approximate method as shown on figure 10. When Encoding and Decoding processes are in

the same module, the RAM footprint and CPU load depend on the type of application.

Figure 10 : CPU load, Encoder (left) and Player (right)

January 2013 SPEEX CODEC Page 12

Conclusion

Dedicated to speech encoding and decoding, Speex is a free audio codec which provides

specific features, absent in others speech codecs, and a good quality of sound with a high

level of compression. That ranks it as a high-performance solution for application using voice

recorder or message playback, such as building and home safety systems, intercoms,

answering machines, smart appliances, voice recorders or walkie-talkies.

