

V.1.00 Release 01

February 1, 2010

RI600/4 V.1.00 Release 01
Release Notes

RI600-4_10001_REL_100201_E

Contents

Section 1 Provided Form 1

Section 2 Required System 1

Section 3 Tool News 1

Section 4 Installation and
Uninstallation 2

Section 5 How to build kernel source
code 2

Section 6 About stack size 3
6.1 Stack size of system clock interrupt

handler .. 3
6.2 Stack size used by service call 3
6.3 When the kernel library is built 6

Section 7 Notes .. 7
7.1 Notes when RX610 group

microcontroller is used 7
7.2 Notes concerning ID code protecting 7
7.3 Notes concerning address 0 7

Section 8 Correction of user's manual 8
8.1 "Table 5.34" (163 Page) 8
8.2 "11.1 Overview" (230 Page) 8

Section 9 History ... 9
9.1 V.1.00 Release 00 (October 2009) 9
9.2 V.1.00 Release 01 (February 2010) 10

9.2.1 Kernel .. 10

WARNING

Take a countermeasure such as a fail safe on the system against personal injury, fire
hazard, or other damages of your system due to the operation of this product. If the
countermeasure cannot be taken, do not use this product.

Microsoft, Windows and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.
IBM PC is a registered trademark of International Business Machines Corporation.
All other company and product names are registered trademarks or trademarks of their respective companies.

1

Section 1 Provided Form
The RI600/4 is provided as shown in table 1.1.

Table 1.1 RI600/4 Provided Form List

Type

Host
Computer

Medium

Number of
Volume

R0R5RX00TRW011 *1

License for evaluation; can be installed only to one host computer.

Windows(R) CD-R 1

R0R5RX00TRW015 *1

License for evaluation, can be installed only to 5 host computers.

Windows(R) CD-R 1

R0R5RX00TRW01A *1

License for evaluation; can be installed only to 10 host computers.

Windows(R) CD-R 1

R0R5RX00TRW01K *1

Mass-production license; can be embedded up to a total of 1,000
productions of product model(s) with the source code not disclosed.

Windows(R) CD-R 1

R0R5RX00TRW01U *1

Mass-production license; can be embedded up to unlimited productions
of product model(s) with the source code not disclosed.

Windows(R) CD-R 1

R0R5RX00TRW01Z

Mass-production license; can be embedded up to unlimited productions
of product model(s) with the source code disclosed.

Windows(R) CD-R 1

*1 These contents of offer are the same.

Section 2 Required System
 Host computer : IBM PC or compatible machine, which runs following, host OS.

Microsoft(R) Windows(R) 2000, Windows(R) XP, or Windows Vista(R)

 Memory capacity : 128 Mbytes at least; 256 Mbytes or more recommended.

 I/O device: CD-ROM drive

 Other requirement: A pointing device such as a mouse

 C/C++ Compiler package for RX Family.

Section 3 Tool News
Tool News provides information on our products so that customers can use the products more efficiently.

The Tool News pages are available on our Web site.

 http://tool-support.renesas.com/eng/toolnews/index.htm

Get the latest information about new products, upgraded versions and precautions from Tool News, and take
advantage of it in your development projects. Since the release notes do not include information issued after the
release of the product, be sure to check the latest issue of Tool News.

http://tool-support.renesas.com/eng/toolnews/index.htm�

2

Section 4 Installation and Uninstallation
The administrator authority of the computer that uses it is required for installing this product.

Start 'setup.exe' in the root directory of the CD-R, and then follow the instructions displayed on the screen. When
installation, close all applications.

The following components are installed by setup.exe.

 Kernel library file, standard header file, and system definition file.

 Command line configurator (cfg600)

 Table generation utility (mkritbl)

 GUI configurator

 Kernel source code (It is attached only to R0R5RX00TRW01Z).

To uninstall, select [RI600/4 V.1.00 Release 01] from [Add/Remove Program] of the Control-Pannel.

Section 5 How to build kernel source code1
The kernel source code is stored in "< installation directory > \src600". It moves to the source code installation
directory to build the kernel, and "Nmake2" is executed.

The environment variable settings are needed by compiler when building the kernel.

Example:

After the building the kernel, the kernel library is generated to the following directories.

Kernel library name Contents
product\big\debug\ri600big.lib Big endian library with debugging information
product\big\release\ri600big.lib Big endian library without debugging information
product\little\debug\ri600lit.lib Little endian library with debugging information
product\little\release\ri600lit.lib Little endian library without debugging information

[Note]

Please copy "src600" directory to the writable directory if you don't have the write-access permission to the
product installation directory. After the build, copy the generated library to the "lib600" directory under the
product installation directory by the user who has write-access permission to the product installation directory.

1 The source code is only attached to a mass production contract version (R0R5RX00TRW01Z).
2 "Nmake.exe" is a tool to build the project provided by Microsoft Corporation in United States. "Nmake.exe" is included in

Microsoft Visual Studio 2008 etc.

C:\RENESAS\src600>nmake

3

Section 6 About stack size

6.1 Stack size of system clock interrupt handler
The value of ε1, ε2, and ε3 described in the manual paragraph 12.4 are as follows.

 ε1 = 104

 ε2 = 104

 ε3 = 196

6.2 Stack size used by service call
In the service call, the stack is used as follows.

(1) Called from the task context
The stack in the task context execution is a user stack. The service call is using following.

(a) User stack (Former call stack)

(b) System stack

 (2) Called from the non-task context

The stack in the non-task context execution is a system stack. The service call is using following.

(a) System stack (Former call stack)

The use size of former stack ((a), (c)) which the service call uses is displayed by Call Walker. However, when the
service call is called from the application of the assembly language, it is necessary to add the value of (a) and (c) by
hand because it is not displayed in Call Walker.

Moreover, to calculate the system stack size described in manual 12.4, the size of (b) and (c) is needed. (Paragraph
12.4 has described as α.)The size of (a), (b) and (c) of each service call is shown as follows.

 Service call
The use size of

User stack(a)

The use size of

System stack ((b),(c))
Note

Task Management Function

1 act_tsk 0 24

2 iact_tsk 0 24

3 can_act 0 24

4 ican_act 0 24

5 sta_tsk 0 24

6 ista_tsk 0 24

7 ext_tsk 0 64
ext_tsk is called at the return from
the task beginning function.

8 ter_tsk 0 132

9 chg_pri 0 36

10 ichg_pri 0 52

11 get_pri 0 24

12 iget_pri 0 24

13 ref_tsk 0 28

14 iref_tsk 0 28

15 ref_tst 0 24

16 iref_tst 0 24

Task Dependent Synchronization Function

17 slp_tsk 0 24

18 tslp_tsk 0 24

19 wup_tsk 0 40

20 iwup_tsk 0 52

4

 Service call
The use size of

User stack(a)

The use size of

System stack ((b),(c))
Note

21 can_wup 0 24

22 ican_wup 0 24

23 rel_wai 0 116

24 irel_wai 0 132

25 sus_tsk 0 24

26 isus_tsk 0 24

27 rsm_tsk 0 24

28 irsm_tsk 0 24

29 frsm_tsk 0 24

30 ifrsm_tsk 0 24

31 dly_tsk 0 24

Semaphore

32 sig_sem 0 44

33 isig_sem 0 60

34 wai_sem 0 32

35 pol_sem 0 24

36 ipol_sem 0 24

37 twai_sem 0 36

38 ref_sem 0 24

39 iref_sem 0 24

Eventflag

40 set_flg 0 48

41 iset_flg 0 64

42 clr_flg 0 24

43 iclr_flg 0 24

44 wai_flg 0 44

45 pol_flg 0 24

46 ipol_flg 0 24

47 twai_flg 0 48

48 ref_flg 0 24

49 iref_flg 0 24

Data Queue

50 snd_dtq 0 36

51 psnd_dtq 0 32

52 ipsnd_dtq 0 52

53 tsnd_dtq 0 40

54 fsnd_dtq 0 32

55 ifsnd_dtq 0 52

56 rcv_dtq 0 32

57 prcv_dtq 0 32

58 iprcv_dtq 0 52

59 trcv_dtq 0 32

60 ref_dtq 0 24

61 iref_dtq 0 24

Mailbox

62 snd_mbx 0 40

63 isnd_mbx 0 56

64 rcv_mbx 0 32

65 prcv_mbx 0 28

66 iprcv_mbx 0 28

67 trcv_mbx 0 36

68 ref_mbx 0 24

69 iref_mbx 0 24

Mutex

5

 Service call
The use size of

User stack(a)

The use size of

System stack ((b),(c))
Note

70 loc_mtx 0 40

71 ploc_mtx 0 24

72 tloc_mtx 0 44

73 unl_mtx 0 56

74 ref_mtx 0 24

Message Buffer

75 snd_mbf 0 44

76 psnd_mbf 0 44

77 ipsnd_mbf 0 60

78 tsnd_mbf 0 44

79 rcv_mbf 0 56

80 prcv_mbf 0 56

81 trcv_mbf 0 56

82 ref_mbf 0 24

83 iref_mbf 0 24

Fixed-sized Memory Pool

84 get_mpf 0 48

85 pget_mpf 0 36

86 ipget_mpf 0 36

87 tget_mpf 0 48

88 rel_mpf 20 36

89 irel_mpf 0 52

90 ref_mpf 0 24

91 iref_mpf 0 24

Variable Size Memory Pool

92 get_mpl 36 96

93 pget_mpl 0 112

94 ipget_mpl 0 112

95 tget_mpl 36 96

96 rel_mpl 0 108

97 ref_mpl 0 24

98 iref_mpl 0 24

Time Management Function

99 set_tim 0 24

100 iset_tim 0 24

101 get_tim 0 24

102 iget_tim 0 24

Cyclic Handler

103 sta_cyc 0 24

104 ista_cyc 0 24

105 stp_cyc 0 24

106 istp_cyc 0 24

107 ref_cyc 0 24

108 iref_cyc 0 24

Alarm Handler

109 sta_alm 0 24

110 ista_alm 0 24

111 stp_alm 0 24

112 istp_alm 0 24

113 ref_alm 0 24

114 iref_alm 0 24

System State Management Function

115 rot_rdq 0 24

116 irot_rdq 0 24

6

 Service call
The use size of

User stack(a)

The use size of

System stack ((b),(c))
Note

117 get_tid 0 24

118 iget_tid 0 24

119 loc_cpu 0 16

120 iloc_cpu 0 16

121 unl_cpu 0 24

122 iunl_cpu 0 24

123 dis_dsp 0 16

124 ena_dsp 0 24

125 sns_ctx 0 24

126 sns_loc 0 24

127 sns_dsp 0 24

128 sns_dpn 0 24

129 vsta_knl 0 52 After the system stack pointer is
initialized, it uses it. 130 ivsta_knl 0 52

131 vsys_dwn 0 16

132 ivsys_dwn 0 16

Interrupt Management Function

133 chg_ims 0 28

134 ichg_ims 0 16

135 get_ims 4 0 The Call Walker displays the stack
size used by get_ims and iget_ims
when these functions are called from
assembly program.

136 iget_ims 0 4

137 ret_int 0 32

System Configuration Management Function

138 ref_ver 0 24

139 iref_ver 0 24

Object Reset Function

140 vrst_dtq 0 48

141 vrst_mbx 0 24

142 vrst_mbf 0 48

143 vrst_mpf 0 48

144 vrst_mpl 0 68

6.3 When the kernel library is built
Please note that the stack size might change when a version and/or an optional setting of the compiler are changed
and the kernel library is built.

7

Section 7 Notes

7.1 Notes when RX610 group microcontroller is used
In the RX610 group, the processor interrupt priority level is limited to 0-7. Even if the value of 8-15 is set when
RX610 is used, it doesn't detect it as an error though it is possible to use for 0-15 as a processor interrupt priority
level in the GUI configurator, cfg600, and the chg_imsichg_ims service call. Please confirm the value of 8-15 is
not set on the user side enough.

7.2 Notes concerning ID code protecting
In RI600/4, when the handler that uses a fixed vector is not defined, the handler address of default is set. The
handler address of default is similarly set as for the ID code area. Please correspond as follows to set the ID code
area to the arbitrary value.

1. The arbitrary symbol of assembly language is defined as an interrupt handler of a fixed vector.
2. The given value is set to the defined symbol.

Example:

To set 0xFFFFFFFF into the address 0xFFFFFFA0,

 Description of configuration file
interrupt_fvector[8]{
 entry_address = ID_CODE1;
};

 Linkage editor option
-define=ID_CODE1=0FFFFFFFF

7.3 Notes concerning address 0
Please do not put the following in address 0.

1. Variable-sized memory pool section
2. Fixed-sized memory pool section
3. Message sent to the mailbox

8

Section 8 Correction of user's manual
The user's manual (The document number: REJ10J2052-0100) is corrected as follows.

8.1 "Table 5.34" (163 Page)
Correct:

Table 5.34 Constants and Macros
Classification Macro Definition Where Description

...

Kernel configuration VTMAX_AREASIZE 0x10000000 kernel.h Maximum size of various areas

...

Error codes E_NOSPT -9 itron.h Unsupported function

...

Incorrect:

Table 5.34 Constants and Macros
Classification Macro Definition Where Description

...

Kernel configuration VTMAX_AREASIZE 0x20000000 kernel.h Maximum size of various areas

...

Error codes E_NOSPT -11 itron.h Unsupported function

...

8.2 "11.1 Overview" (230 Page)
Correct:

Table 11.1 Functions in the Sample Program
Function Type ID number Task priority Description

task1() Task 1 1 Outputs "task1 running"

task2() Task 2 2 Outputs "task2 running"

cyh1() Cyclic handler 1 - Wakes up task1

Incorrect:

Table 11.1 Functions in the Sample Program
Function Type ID number Task priority Description

main() Task 1 1 Activates task1 and task2 and cyh1

task1() Task 2 2 Outputs "task1 running"

task2() Task 3 3 Outputs "task2 running"

cyh1() Cyclic handler 1 - Wakes up task1

Correct:

The content of processing is described below.

 The task1 operates in order to following.

Incorrect:

The content of processing is described below.

 The main task activates task1, task2, and cyh1, and then terminates itself.

 The task1 operates in order to following.

9

Section 9 History

9.1 V.1.00 Release 00 (October 2009)
The first release.

10

9.2 V.1.00 Release 01 (February 2010)

9.2.1 Kernel

(1) Problem Fixed Concerning Service Calls With a Time Waiting

The following problem is fixed.

The following problems might occur when a task enters to the WAITING state by either of the service call with
a time waiting (*) , and the WAITING state of the task is released by the methods other than the passing of
time.

 (a) Even if the specified time passes, the task that calls the service call with a time waiting is not released
 from the WAITING state.

 (b) Time when the WAITING state of the task that calls the service call with a time waiting is released is
 delayed.

 (c) The operation of unspecified task becomes illegal.

* Service calls with a time waiting:

 tslp_tsk, dly_tsk, twai_sem, twai_flg, tsnd_dtq, trcv_dtq, trcv_mbx, tloc_mtx, tsnd_mbf, trcv_mbf,
 tget_mpf, tget_mpl

(2) Problem Fixed Concerning Cyclic Handler and Alarm Handler [1]

The following problem is fixed.

When a cyclic handler or alarm handler updates the R5 register, the kernel might access (read/write) to
unspecified address.

(3) Problem Fixed Concerning Cyclic Handler and Alarm Handler [2]

The following problem is fixed.

When a cyclic handler or alarm handler updates the R8 - R13 registers, the R8 - R13 registers in the program
which is interrupted by the system-clock interrupt handler are destroyed.

(4) Problem Fixed Concerning System Clock Interrupt Handler

The following problem is fixed.

When application uses DSP instructions, the ACC register in the program which is interrupted by the system-
clock interrupt handler might be destroyed.

(5) Problem Fixed Concerning irel_mpf

The following problem is fixed.

The R6 register might not be guaranteed before and after the call of iref_mpf.

11

(6) Change in Stack Size

The contents of "6.1 Stack size of system clock interrupt handler" is changed as follows.

Before:

The value of ε1 described in the manual paragraph 12.4, ε2, and ε3 is as follows.

 ε1 = 72

 ε2 = 72

 ε3 = 144

After:

The value of ε1, ε2, and ε3 described in the manual paragraph 12.4 are as follows.

 ε1 = 104

 ε2 = 104

 ε3 = 196

And the table in "6.2 Stack size used by service call" is changed.

The changed service calls are shown as follows.

 - The size of System stack used by ter_tsk : 112  132

 - The size of System stack used by rel_wai : 96 116

 - The size of System stack used by irel_wai : 112 132 *

 - The size of System stack used by irel_mpf : 48 52 *

 - The size of System stack used by get_mpl : 76  96

 - The size of System stack used by pget_mpl : 92  112

 - The size of System stack used by ipget_mpl : 92  112 *

 - The size of System stack used by tget_mpl : 76  96

 - The size of System stack used by rel_mpl : 88  108

The stack size displayed by "Call Walker" is also changed about the service calls shown in "*".

(7) Addition of Notes

"7.3 Notes concerning address 0" of this book is added.

(8) Others

Following values is changed.

Item Before After

The TKERNEL_PRVER macro, and T_RVER.prver, which is returned by the ref_ver 0x0100 0x0101

RI600/4 Release Notes

Revision Date : February 1, 2010

Copyright (C) 2009(2010) Renesas Technology Corp. and Renesas Solutions Corp. All rights reserved

http://www.renesas.com/

	Section 1 Provided Form
	Section 2 Required System
	Section 3 Tool News
	Section 4 Installation and Uninstallation
	Section 5 How to build kernel source code
	Section 6 About stack size
	6.1 Stack size of system clock interrupt handler
	6.2 Stack size used by service call
	6.3 When the kernel library is built

	Section 7 Notes
	7.1 Notes when RX610 group microcontroller is used
	7.2 Notes concerning ID code protecting
	7.3 Notes concerning address 0

	Section 8 Correction of user's manual
	8.1 "Table 5.34" (163 Page)
	8.2 "11.1 Overview" (230 Page)

	Section 9 History
	9.1 V.1.00 Release 00 (October 2009)
	9.2 V.1.00 Release 01 (February 2010)
	9.2.1 Kernel

