Projet

Général

Profil

« Précédent | Suivant » 

Révision 921

Ajouté par Ely SENE il y a environ 4 ans

exam

Voir les différences:

branch/SENE/sp4a12/main.c
}
return a;
}
}/*
//fonction decode_nombre
int decode_nombre(char *ch,int n)
......
r=r+tab[i]*pow(10,n-i-1);
}
return r;
}
}*/
......
void test_decode_int(void)
{
char i;
for(i=0;i<10;i++)
{
if(decode_int('i')==1)
printf("Valeur d?cimal ?gale au caractere");
}
char caract='5';
int valeur;
valeur = decode_int(caract);
printf("La valeur en decimale est : %d\n",valeur);
}
void test_decode_nombre(void)
/*void test_decode_nombre(void)
{
char *c;
c="7541";
......
printf("Test valid?");
exit(-1);
}
}
}*/
// Ne pas modifier cette fonction
int main(int argc,char ** argv)
branch/SENE/sp4c12/Ely_SENE_sp4c12/sp4c/sp4c/sp4c.c
#include"sfr32c87.h"
#include <stdlib.h>
void uart0_tx(char c){
te_u0c1 = 1;
ti_u0c1 = 0;
while(ti_u0c1 == 1){
u0tb = c;
}
u0tb = c;
}
}
void main(void)
{
char c = 'Y';
//U0MR
smd0_u0mr = 1; //Uart en mode 8bit
smd1_u0mr = 0;
smd2_u0mr = 1;
smd2_u0mr = 1;
ckdir_u0mr = 0; //horloge interne
stps_u0mr = 0; //1 bit de stop
pry_u0mr = 0; //parit? impair
prye_u0mr = 0; //parit? d?sactiv?
iopol_u0mr = 0; // TX RX non inv?rs?
//U0SMR
u0smr = 0x00;
u0smr2 = 0x00;
u0smr3 = 0x00;
u0smr4 = 0x00;
//U0BRG
u0brg = 0x20; // baud rate
u0brg = 0x20; // baud rate
//U0C0
clk0_u0c0 =1; // selection f8
clk1_u0c0 =0;
crs_u0c0 =0;
txept_u0c0 =0;
crd_u0c0 =1;
nch_u0c0 =0;
ckpol_u0c0 =0;
uform_u0c0 =0;
clk1_u0c0 =0;
crs_u0c0 =0;
txept_u0c0 =0;
crd_u0c0 =1;
nch_u0c0 =0;
ckpol_u0c0 =0;
uform_u0c0 =0;
//U0C1
te_u0c1 = 1;
te_u0c1 = 1;
ti_u0c1 = 0;
re_u0c1 = 1;
ri_u0c1 = 0;
u0irs_u0c1 = 0;
u0rrm_u0c1 = 0;
re_u0c1 = 1;
ri_u0c1 = 0;
u0irs_u0c1 = 0;
u0rrm_u0c1 = 0;
u0lch_u0c1 = 0;
sclkstpb_u0c1 = 0;
sclkstpb_u0c1 = 0;
u0ere_u0c1 = 0;
pd6_0 = 0;
pd6_1 = 0;
pd6_2 = 0;
pd6_3 = 1;
ps0_0 = 0;
ps0_1 = 0;
ps0_2 = 0;
ps0_3 = 1;
while(1){
uart0_tx(c);
c=c+1;
if(c > 90){
c = 'A';
c = 'A';
}
}
}
}
ALPHABET
#include"sfr32c87.h"
#include <stdlib.h>
void uart0_tx(char c){
te_u0c1 = 1;
ti_u0c1 = 0;
while(ti_u0c1 == 1){
u0tb = c;
}
}
void main(void)
{
char c = 'Y';
//U0MR
smd0_u0mr = 1; //Uart en mode 8bit
smd1_u0mr = 0;
smd2_u0mr = 1;
ckdir_u0mr = 0; //horloge interne
stps_u0mr = 0; //1 bit de stop
pry_u0mr = 0; //parit? impair
prye_u0mr = 0; //parit? d?sactiv?
iopol_u0mr = 0; // TX RX non inv?rs?
//U0SMR
u0smr = 0x00;
u0smr2 = 0x00;
u0smr3 = 0x00;
u0smr4 = 0x00;
//U0BRG
u0brg = 0x20; // baud rate
//U0C0
clk0_u0c0 =1; // selection f8
clk1_u0c0 =0;
crs_u0c0 =0;
txept_u0c0 =0;
crd_u0c0 =1;
nch_u0c0 =0;
ckpol_u0c0 =0;
uform_u0c0 =0;
//U0C1
te_u0c1 = 1;
ti_u0c1 = 0;
re_u0c1 = 1;
ri_u0c1 = 0;
u0irs_u0c1 = 0;
u0rrm_u0c1 = 0;
u0lch_u0c1 = 0;
sclkstpb_u0c1 = 0;
u0ere_u0c1 = 0;
pd6_0 = 0;
pd6_1 = 0;
pd6_2 = 0;
pd6_3 = 1;
ps0_0 = 0;
ps0_1 = 0;
ps0_2 = 0;
ps0_3 = 1;
while(1){
uart0_tx(c);
c=c+1;
if(c > 90){
c = 'A';
}
}
}
CLAVIER
clavier
#include "sfr32c87.h"
/* init_keyboard(void);
void tpo_50ms(void);
unsigned char touche = 0;
void main(void){
init_keyboard();
while(1){
if ( (p10 & 0xf0)!= 0xf0 ){
touche = p10;
tpo_50ms();
}
}
}
void init_keyboard(void){
pd10 = 0x0F;
p10=0;
pu31 = 1 ;
}
void tpo_50ms(void){
tcspr = 0x8A;
ta0mr = 0x82;
ta0 = 50000;
ta0s = 1;
ta0os = 1;
ta0ic = 0x00;
while(ir_ta0ic != 1 );
ta0s = 0;
}*/
char t;
char touche;
void main(void){
pd10=0x0F;
pu31=1;
p10=0x00;
while(1){
t=p10;
if(t!=0xF0){
p10=0xFe;
t=p10;
if(t==0xde){
touche = '2';
}
if(t==0xbe){
touche = '1';
}
if(t==0xfe){
touche = '7';
}
if(t==0x7e){
touche = '3';
}
p10=0xFd;
t=p10;
if(t==0xbd){
touche = '4';
}
if(t==0xdd){
touche = '5';
}
if(t==0x7d){
touche = '6';
}
p10=0xFb;
t=p10;
if(t==0xdb){
touche = '8';
}
if(t==0x7b){
touche = '9';
}
if(t==0xeb){
touche = '7';
}
p10=0xF7;
t=p10;
if(t==0xd7){
touche = '0';
}
if(t==0xe7){
touche = '*';
}
if(t==0x77){
touche = '#';
}
}
}
}
ENVOIE CHAINE DE CARACT
envoie chaine de caractere
#include"sfr32c87.h"
#include <stdlib.h>
void uart0_tx(char c){
te_u0c1 = 1;
ti_u0c1 = 0;
while(ti_u0c1 == 1){
u0tb = c;
}
}
void main(void)
{
char c = 'Y';
//U0MR
smd0_u0mr = 1; //Uart en mode 8bit
smd1_u0mr = 0;
smd2_u0mr = 1;
ckdir_u0mr = 0; //horloge interne
stps_u0mr = 0; //1 bit de stop
pry_u0mr = 0; //parit? impair
prye_u0mr = 0; //parit? d?sactiv?
iopol_u0mr = 0; // TX RX non inv?rs?
//U0SMR
u0smr = 0x00;
u0smr2 = 0x00;
u0smr3 = 0x00;
u0smr4 = 0x00;
//U0BRG
u0brg = 0x20; // baud rate
//U0C0
clk0_u0c0 =1; // selection f8
clk1_u0c0 =0;
crs_u0c0 =0;
txept_u0c0 =0;
crd_u0c0 =1;
nch_u0c0 =0;
ckpol_u0c0 =0;
uform_u0c0 =0;
//U0C1
te_u0c1 = 1;
ti_u0c1 = 0;
re_u0c1 = 1;
ri_u0c1 = 0;
u0irs_u0c1 = 0;
u0rrm_u0c1 = 0;
u0lch_u0c1 = 0;
sclkstpb_u0c1 = 0;
u0ere_u0c1 = 0;
pd6_0 = 0;
pd6_1 = 0;
pd6_2 = 0;
pd6_3 = 1;
ps0_0 = 0;
ps0_1 = 0;
ps0_2 = 0;
ps0_3 = 1;
while(1){
uart0_tx(c);
c=c+1;
if(c > 90){
c = 'A';
}
}
}
IRECTRAME
irectrame
#include "sfr32c87.h"
void uart0_init(void); // Initialisation du port s?rie
void uart0_tx(char c); //Envoie d'un caract?re
char uart0_rx(void); //Fonction d'attente et lecture d'un caract?re
int rectramev1(char * Buffer);
int rectramev2(char * Buffer);
void irectramev1(char * Buffer);
int hex2int(char *c); //Passage hexa en int
/*Variable Globale*/
int trame_ok;
int Etat = 0; //0->synchronisation, 1->reception, 2->checksum, 3->validation
void main(void)
{
char Buffer[80];
uart0_init();
while(1){
uart0_tx(rectramev1(Buffer)+48);
if (trame_ok == 1){
uart0_tx('O');
uart0_tx('K');
}
else{
uart0_tx('N');
uart0_tx('O');
uart0_tx('N');
}
}
}
void uart0_init(void){
u0mr = 0x05;
u0brg = 32;
u0c0 = 0x11;
u0c1 = 0x05;
pd6_0 = 0;
pd6_1 = 0;
pd6_2 = 0;
pd6_3 = 1; //On affecte seulement les bits que l'on a besoin pour le bon fonctionnement
ps0_3 = 1;
}
void uart0_tx(char c){
while (ti_u0c1 != 1);
u0tb = c;
}
char uart0_rx(void){
while (ri_u0c1 != 1);
return u0rb;
}
int rectramev1(char * Buffer){
int i;
char checksum;
char carac_recu;
char checksum_trame[3];
while (uart0_rx() != '$');
i = 0;
checksum = 0; //'0'
while ((carac_recu = uart0_rx()) != '*'){
Buffer[i++] = carac_recu;
checksum = checksum ^ carac_recu; // ^ est le ou exclusif
}
checksum_trame[0] = uart0_rx();
checksum_trame[1] = uart0_rx();
if (checksum == hex2int(checksum_trame)){
trame_ok = 1;
}
else{
trame_ok = 0;
}
return i;
}
/*int rectramev2(char * Buffer){
int i;
char c;
while(1){
c = u0rb;
if (c == '&'){
}
}
return i;
}*/
void irectramev1(char * Buffer){
int i;
char c;
char checksum_trame;
while(1){
c = uart0_rx();
switch(Etat){
case 0 : //Synchro
if (c == '$'){
i = 0;
checksum_trame = 0;
Etat = 1;
}
case 1 : //Reception
if (c != '*'){
Buffer[i++] = c;
checksum_trame ^= c;
}
else{
Etat = 2;
}
case 2 : //checksum
}
}
}
int hex2int(char *c)
{
int i=0;
for(i=0; i<2; i++)
{
if(c[i]>='0' && c[i]<='9')
{
c[i] = c[i] - '0';
}
if(c[i]>='A' && c[i]<='F')
{
c[i] = c[i] - 'A' + 10;
}
}
return(c[1]+16*c[0]);
}
/*
typedef enum{synchronisation , reception , checksum , validation}etat_machine;
etat_machine etat=synchronisation;
int RecTrame(char*Buffer)
{
//declaration des variables
int nombre_caractere_apres_etoile=0;
int k=0; //pour le test
int nombre_cararactere=0;
char caractere_recu;
char checksum_trame=0;
char checksum_fin_trame[3];
char checksum_calculer=0;
while(1)
{
//caractere_recu = uart0_rx();
caractere_recu = trame1[k];
k++;
switch(etat)
{
case synchronisation :
if(caractere_recu == '$')
{
nombre_cararactere = 0;
etat=reception;
checksum_trame = 0;
}
break;
case reception :
if(caractere_recu != '*')
{
//placement du caractere recu de la trame dans le Buffer
Buffer[nombre_cararactere] = caractere_recu;
nombre_cararactere++;
//verification du checksum ? chaque caractere recu
checksum_trame ^= caractere_recu;
nombre_caractere_apres_etoile = 0;
}
else
{
//passage ? l'etat cheksum quand la trame est memoris?e
etat = checksum;
}
break;
case checksum :
//r?cup?ration du checksum de la trame (2derniers caract?res)
checksum_fin_trame[nombre_caractere_apres_etoile] = caractere_recu;
//attention, on m?morise deux caract?res
donc, premier caract?re -> nombre_caractere_apres_etoile=0
deuxi?me caract?re -> nombre_caractere_apres_etoile=1
soit deux caract?res m?moris?s apr?s la virgule
if(nombre_caractere_apres_etoile == 2)
{
etat = validation;
checksum_calculer = hex_int(checksum_fin_trame);
}
nombre_caractere_apres_etoile++;
break;
case validation :
//comparaison du checksum_trame et checksum_calculer
si l'?galit? est v?rifi?e alors on retourne le nombre
de caract?re de la trame, sinon on retourne la valeur 0
if(checksum_trame == checksum_calculer)
{
etat = synchronisation;
return nombre_cararactere;
}
else
{
etat = synchronisation;
return 0;
}
break;
}
}
}
*/
KALMAN
Kalman
// Pour compiler : gcc sp4a3_kalman.c -lm
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "sp4a3_kalman_extra.h"
void init(int n, int m, double R22 [n][m])
{
short i=0,j=0;
for (i=0;i<n;i++)
{
for (j=0;j<m;j++)
{
R22[i][j]=0;
}
}
}
void Add_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double OUT[na][ma])
{
short i=0,j=0;
init (na,ma,OUT); // initialisation Resultat
for (i=0;i<na;i++)
{
for (j=0;j<ma;j++)
{
OUT[i][j]=A[i][j]+B[i][j];
}
}
}
void Inverse_Mat_22(int n,int m,double A[n][m],double OUT[n][m])
{
short i=0,j=0;
init (n,m,OUT); // initialisation Resultat
if ((A[0][0]*A[1][1]-A[0][1]*A[1][0])==0)
{
printf ("Erreur d'inversion : determinant de la matrice nul");
exit (-1);
}
for (i=0;i<n;i++)
{
for (j=0;j<m;j++)
{
if (i!=j)
{
OUT[i][j]= -(1/(A[0][0]*A[1][1]-A[0][1]*A[1][0]) * A[i][j]);
OUT[i][i]= (1/(A[0][0]*A[1][1]-A[0][1]*A[1][0]) * A[j][j]);
}
}
}
}
void Transpose_Mat(int n,int m,double A[n][m],double R[m][n])
{
short i=0,j=0;
init (m,n,R); // initialisation Resultat
for (i=0;i<m;i++)
{
for (j=0;j<n;j++)
{
R[i][j]=A[j][i];
}
}
}
void Sub_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double OUT[na][ma])
{
short i=0,j=0;
init (na,ma,OUT); // initialisation Resultat
for (i=0;i<na;i++)
{
for (j=0;j<ma;j++)
{
OUT[i][j]=A[i][j]-B[i][j];
}
}
}
void Mul_Mat_Mat(int na,int ma,double A[na][ma], int nb,int mb,double B[nb][mb], double OUT[na][mb])
{
short i=0,j=0,k=0;
init (na,mb,OUT); // initialisation Resultat
if (ma!=nb)
{
printf ("Erreur dimension matrice multiplication.");
exit (-1);
}
for (i=0;i<na;i++)
{
for (j=0;j<mb;j++)
{
for (k=0;k<ma;k++)
{
OUT[i][j]= OUT[i][j] + (A[i][k]*B[k][j]);
}
}
}
}
void tests_unitaires(void){
//Matrices d'entr?e
double T21a[2][1]={{7},{-5}};
double T21b[2][1]={{-3},{46}};
double T22a[2][2]={{12,78},{-5,13}};
double T22b[2][2]={{-25,36},{7,42}};
double T24[2][4]={{7,-71,-12,3},{41,123,-5,10}};
double T41a[4][1]={{45},{-123},{-78},{-410}};
double T41b[4][1]={{-10},{45},{27},{-9}};
double T42a[4][2]={{-73,45},{10,12},{-41,-35},{8,-23}};
double T44a[4][4]={{1,2,7,4},{6,5,7,8},{9,8,7,6},{5,4,3,2}};
double T44b[4][4]={{12,13,14,15},{21,22,23,40},{78,45,12,3},{54,10,12,47}};
//Matrices r?sultat
double R21[2][1],R22[2][2],R24[2][4],R41[4][1],R42[4][2],R44[4][4];
//Matrices de validation
double RST21[2][1]={{10},{-51}};
double RInvT22[2][2]={{0.02380952380952381,-0.1428571428571428},{0.009157509157509158,0.02197802197802198}};
double RAT22[2][2]={{-13,114},{2,55}};
double RTT24[4][2]={{7,41},{-71,123},{-12,-5},{3,10}};
double RMT24T41[2][1]={{8754},{-16994}};
double RMT24T42[2][2]={{-705,-186},{-1478,3266}};
double RMT24T44[2][4]={{-512,-425,-523,-606},{784,697,1143,1138}};
double RAT41[4][1]={{35},{-78},{-51},{-419}};
double RMT42T21[4][1]={{-736},{10},{-112},{171}};
double RMT42T22[4][2]={{-1101,-5109},{60,936},{-317,-3653},{211,325}};
double RMT42T24[4][4]={{1334,10718,651,231},{562,766,-180,150},{-1722,-1394,667,-473},{-887,-3397,19,-206}};
double RTT44[4][4]={{1,6,9,5},{2,5,8,4},{7,7,7,3},{4,8,6,2}};
double RMT44T41[4][1]={{-2387},{-4171},{-3585},{-1321}};
double RMT44T42[4][2]={{-308,-268},{-611,-99},{-816,118},{-432,122}};
double RAT44[4][4]={{13,15,21,19},{27,27,30,48},{87,53,19,9},{59,14,15,49}};
double RST44[4][4]={{-11,-11,-7,-11},{-15,-17,-16,-32},{-69,-37,-5,3},{-49,-6,-9,-45}};
double RMT44T44[4][4]={{816,412,192,304},{1155,583,379,687},{1146,668,466,758},{486,308,222,338}};
printf("Execution des tests unitaires.\n");
Transpose_Mat(2,4,T24,R42); if (!Equal_Mat_Mat(RTT24,R42)) error("Erreur calcul Transposition 2x4");
Transpose_Mat(4,4,T44a,R44); if (!Equal_Mat_Mat(RTT44,R44)) error("Erreur calcul Transposition 4x4");
Inverse_Mat_22(2,2,T22a,R22); if (!Equal_Mat_Mat(RInvT22,R22)) error("Erreur calcul Inversion 2x2");
Add_Mat_Mat(2,2,T22a,2,2,T22b,R22); if (!Equal_Mat_Mat(RAT22,R22)) error("Erreur calcul Addition 2x2");
Add_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RAT44,R44)) error("Erreur calcul Addition 4x4");
Add_Mat_Mat(4,1,T41a,4,1,T41b,R41); if (!Equal_Mat_Mat(RAT41,R41)) error("Erreur calcul Addition 4x1");
Sub_Mat_Mat(2,1,T21a,2,1,T21b,R21); if (!Equal_Mat_Mat(RST21,R21)) error("Erreur calcul Soustraction 2x1");
Sub_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RST44,R44)) error("Erreur calcul Soustraction 4x4");
Mul_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RMT44T44,R44)) error("Erreur calcul Multiplication 4x4 4x4");
Mul_Mat_Mat(4,4,T44a,4,1,T41a,R41); if (!Equal_Mat_Mat(RMT44T41,R41)) error("Erreur calcul Multiplication 4x4 4x1");
Mul_Mat_Mat(4,4,T44a,4,2,T42a,R42); if (!Equal_Mat_Mat(RMT44T42,R42)) error("Erreur calcul Multiplication 4x4 4x2");
Mul_Mat_Mat(4,2,T42a,2,1,T21a,R41); if (!Equal_Mat_Mat(RMT42T21,R41)) error("Erreur calcul Multiplication 4x2 2x1");
Mul_Mat_Mat(4,2,T42a,2,2,T22a,R42); if (!Equal_Mat_Mat(RMT42T22,R42)) error("Erreur calcul Multiplication 4x2 2x2");
Mul_Mat_Mat(4,2,T42a,2,4,T24,R44); if (!Equal_Mat_Mat(RMT42T24,R44)) error("Erreur calcul Multiplication 4x2 2x4");
Mul_Mat_Mat(2,4,T24,4,1,T41a,R21); if (!Equal_Mat_Mat(RMT24T41,R21)) error("Erreur calcul Multiplication 2x4 4x1");
Mul_Mat_Mat(2,4,T24,4,2,T42a,R22); if (!Equal_Mat_Mat(RMT24T42,R22)) error("Erreur calcul Multiplication 2x4 4x2");
Mul_Mat_Mat(2,4,T24,4,4,T44a,R24); if (!Equal_Mat_Mat(RMT24T44,R24)) error("Erreur calcul Multiplication 2x4 4x4");
printf("Test unitaires OK.\n");
getchar();
}
int main(int argc,char **argv){
tests_unitaires();
FILE* fichier = fopen("pos_t_x_y.dat","r");
if (fichier == NULL)
error("Impossible d'ouvrir le fichier GPGGA_data.dat");
FILE * Fout = Fout = fopen("output.dat","w");
if (fichier == NULL)
error("Impossible d'ouvrir le fichier output.dat");
printf("Kalman\n");
double t = 0;
double t0,x0,y0;
double x,y;
double oldx,oldy;
double dx=0,dy=0,dt=0.1;
int cpt = 0;
// kalman param
double sigma_etat = 10.0;
double sigma_observation = 2.0;
double X[4][1] = {{0},{0},{0},{0}};
double P[4][4] = {{sigma_etat*sigma_etat, 0, 0, 0},
{0, sigma_etat*sigma_etat, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}};
double Q[4][4] = {{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0.1, 0},
{0, 0, 0, 0.1}};
double R[2][2] = {{sigma_observation*sigma_observation, 0},
{0 , sigma_observation*sigma_observation}};
double K[4][2];
double H[2][4] = {{1, 0, 0, 0},
{0, 1, 0, 0}};
double HT[4][2];
Transpose_Mat(2,4,H,HT);
double F[4][4] = {{1, 0, dt, 0},
{0, 1, 0, dt},
{0, 0, 1, 0},
{0, 0, 0, 1}};
double FT[4][4];
Transpose_Mat(4,4,F,FT);
while(fscanf(fichier, "%lf %lf %lf", &t, &x, &y)>0){
printf("-------------%04d--------------\n",cpt);
if (cpt ==0)
{
t0=t;x0=x;y0=y;
x=x-x0;y=y-y0;
Plot_Mat(F,"F = ");
Plot_Mat(H,"H = ");
Plot_Mat(R,"R = ");
}
else
{
t -= t0;x -= x0;y -= y0;
debug=1; ///Mettre ? 1 pour afficher les matrices.
///Ajouter votre code ci-dessous///
// Kalman
//Matrices temporaires
double Temp44[4][4]={{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
double Temp24[2][4]={{0,0,0,0},{0,0,0,0}};
double Temp42[4][2]={{0,0},{0,0},{0,0},{0,0}};
double Temp22[2][2]={{0,0},{0,0}};
double Temp21[2][1]={{0},{0}};
double Temp41[4][1]={{0},{0},{0},{0}};
double Res0[4][1];
double Res1[4][4];
double Res2[2][2];
double Res3[4][1];
double Res4[4][4];
//Prediction
Plot_Mat(X," X(k|k) = ");
//X=F*X
Mul_Mat_Mat(4,4,F,4,1,X,Res0);
Add_Mat_Mat(4,1,Res0,4,1,Temp41,X); // Temp41 est initialis?e ? 0 donc grace ? ca on affecte ? X la matrice Res0
Plot_Mat(X,"X(k+1|k) = F*X(k|k) = ");
Plot_Mat(P,"P(k|k) = ");
//P=F*P*F'+Q
Mul_Mat_Mat(4,4,F,4,4,P,Temp44);
Mul_Mat_Mat(4,4,Temp44,4,4,FT,Res1);
Add_Mat_Mat(4,4,Res1,4,4,Q,P);
Plot_Mat(P,"P(k+1|k) = F.P(k|k).FT + Q = ");
//Gain
//K=P*H'/(H*P*H'+R)
Mul_Mat_Mat(4,4,P,4,2,HT,Temp42);
Plot_Mat(Temp42,"P(k+1|k).HT = ");
Mul_Mat_Mat(2,4,H,4,2,Temp42,Temp22);
Add_Mat_Mat(2,2,Temp22,2,2,R,Res2);
Plot_Mat(Res2,"H.P(k+1|k).HT + R = ");
Inverse_Mat_22(2,2,Res2,Temp22);
Plot_Mat(Temp22,"INV(H.P(k+1|k).HT + R) = ");
Mul_Mat_Mat(4,2,HT,2,2,Temp22,Temp42);
Mul_Mat_Mat(4,4,P,4,2,Temp42,K);
Plot_Mat(K,"K = ");
//MaJ
double VECT [2][1]={{x},{y}};
Plot_Mat(VECT,"obs = ");
//DELTA = Obs - H.X(k+1|k)
double Delta [2][1];
Mul_Mat_Mat(2,4,H,4,1,X,Temp21);
Sub_Mat_Mat(2,1,VECT,2,1,Temp21,Delta);
Plot_Mat(Delta,"DELTA = Obs - H.X(k+1|k) = ");
//X = X + K*([xb(i);yb(i)]-H*X);
Mul_Mat_Mat(4,2,K,2,1,Delta,Temp41);
Add_Mat_Mat(4,1,X,4,1,Temp41,Res3);
init(4,1,Temp41); //Temp41 = 0
Add_Mat_Mat(4,1,Temp41,4,1,Res3,X);
//Plot_Mat(Delta,"DELTA = Obs - H.X(k+1|k)");
Plot_Mat(X," X(k+1|k+1) = X(k+1|k) + K.Delta = ");
init(2,4,Temp24);
// P = P - K*H*P;
Mul_Mat_Mat(2,4,H,4,4,P,Temp24);
Mul_Mat_Mat(4,2,K,2,4,Temp24,Temp44);
Sub_Mat_Mat(4,4,P,4,4,Temp44,Res4);
init(4,4,Temp44); //Temp44 est ?gale ? 0.
Add_Mat_Mat(4,4,Res4,4,4,Temp44,P); // P=Res3+0 donc on affecte ? P la matrice Res3
Plot_Mat(P," P(k+1|k+1) = P(k+1|k) - K.H.P(k+1|k) = ");
/// La matrice X doit contenir la position filtr?e ///
}
t = cpt * dt;
dx = (x - oldx)/dt;
dy = (y - oldy)/dt;
fprintf(Fout,"%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n",t,x,y,sqrt(dx*dx+dy*dy)*dt,X[0][0],X[1][0],X[2][0],X[3][0],sqrt(X[2][0]*X[2][0]+X[3][0]*X[3][0])*dt);
oldx = x;
oldy = y;
cpt ++;
}
fclose(Fout);
fclose(fichier);
system ("gnuplot -p -e \"plot 'output.dat' u 5:6 w l, '' u 2:3 w l\";");
system ("gnuplot -p -e \"plot 'output.dat' u 1:9 w l, '' u 1:4 w l\";");
system ("gnuplot -p -e \"plot 'vitesse_reelle.dat' u 2 w l, 'output.dat' u 9 w l\";");
return 0;
}

Formats disponibles : Unified diff