Projet

Général

Profil

// Pour compiler : gcc sp4a3_kalman.c -lm

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include "sp4a3_kalman_extra.h"


void Add_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double R[na][ma])
{
int i,j;
double AddM;
if(na==nb && ma==mb) //Si le nombre de lignes de A=B et si les colonnes de A=B
{
for(i=0;i<na;i++)
{
for(j=0;j<mb;j++)
{
AddM=A[i][j] + B[i][j]; //On somme les élements qui se trouvent dans les mêmes positions
R[i][j]=AddM;
}
}
}
else
{
printf("Les deux matrices nont pas la meme taille\n");
}
}

void Inverse_Mat_22(int n,int m,double A[n][m],double R[n][m])
{
double Det;

Det=(A[0][0]*A[1][1])-(A[0][1]*A[1][0]);//Calcul du déterminant: Det(A={(a,b);(c,d)}=(ad-cb)

//(A)^(-1)=(1/det(A))*{(d,-b),(-c,a)}
R[0][0]=(1/Det)*A[1][1];//La matrice résultat a le même nombre de ligne que la matrice A
R[0][1]=-(1/Det)*A[0][1];
R[1][0]=-(1/Det)*A[1][0];
R[1][1]=(1/Det)*A[0][0];
}

void Transpose_Mat(int n,int m,double A[n][m],double R[m][n])
{
int i,j;
for (i=0;i<n;i++)
{
for (j=0;j<m;j++)
{
R[j][i]=A[i][j];//Les lignes deviennent les colonnes et les colonnes devinnent les lignes
}

}




}

void Sub_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double R[na][ma])
{
int i,j;
double SubM;
if(na==nb && ma==mb)// Même condition que l'adiction
{
for(i=0;i<na;i++)
{
for(j=0;j<mb;j++)
{
SubM=A[i][j] - B[i][j];//On soustrait les élements qui se trouvent dans les mêmes positions
R[i][j]=SubM;
}
}
}
else
{
printf("Les deux matrices nont pas la meme taille\n");
}
}

void Mul_Mat_Mat(int na,int ma,double A[na][ma], int nb,int mb,double B[nb][mb], double R[na][mb])
{
int i,j,k;
if(ma==nb)//Si le nombre de colonnes de la matrice A égale au nombre de ligne de la matrice B
{
for (i = 0; i < na; i++)//La matrice résultat a le même nombre de ligne que la matrice A
{
for (j = 0; j < mb; j++)//La matrice résultat a le même nombre de colonne que la matrice B
{
R[i][j] = 0;
for (k = 0; k < ma; k++)
{
R[i][j] += A[i][k] * B[k][j];//On somme les résultats de la multiplication des élements de chaque ligne de A par celles de chaque colonne de B
}
}
}
}
else
{
printf("Les colonnes de A et les lignes de B ne sont pas les memes\n");
}
}



void tests_unitaires(void)
{
//Matrices d'entrée
double T21a[2][1]={{7},{-5}};
double T21b[2][1]={{-3},{46}};
double T22a[2][2]={{12,78},{-5,13}};
double T22b[2][2]={{-25,36},{7,42}};
double T24[2][4]={{7,-71,-12,3},{41,123,-5,10}};
double T41a[4][1]={{45},{-123},{-78},{-410}};
double T41b[4][1]={{-10},{45},{27},{-9}};
double T42a[4][2]={{-73,45},{10,12},{-41,-35},{8,-23}};
double T44a[4][4]={{1,2,7,4},{6,5,7,8},{9,8,7,6},{5,4,3,2}};
double T44b[4][4]={{12,13,14,15},{21,22,23,40},{78,45,12,3},{54,10,12,47}};
//Matrices résultat
double R21[2][1],R22[2][2],R24[2][4],R41[4][1],R42[4][2],R44[4][4];

//Matrices de validation
double RST21[2][1]={{10},{-51}};
double RInvT22[2][2]={{0.02380952380952381,-0.1428571428571428},{0.009157509157509158,0.02197802197802198}};
double RAT22[2][2]={{-13,114},{2,55}};
double RTT24[4][2]={{7,41},{-71,123},{-12,-5},{3,10}};
double RMT24T41[2][1]={{8754},{-16994}};
double RMT24T42[2][2]={{-705,-186},{-1478,3266}};
double RMT24T44[2][4]={{-512,-425,-523,-606},{784,697,1143,1138}};
double RAT41[4][1]={{35},{-78},{-51},{-419}};
double RMT42T21[4][1]={{-736},{10},{-112},{171}};
double RMT42T22[4][2]={{-1101,-5109},{60,936},{-317,-3653},{211,325}};
double RMT42T24[4][4]={{1334,10718,651,231},{562,766,-180,150},{-1722,-1394,667,-473},{-887,-3397,19,-206}};
double RTT44[4][4]={{1,6,9,5},{2,5,8,4},{7,7,7,3},{4,8,6,2}};
double RMT44T41[4][1]={{-2387},{-4171},{-3585},{-1321}};
double RMT44T42[4][2]={{-308,-268},{-611,-99},{-816,118},{-432,122}};
double RAT44[4][4]={{13,15,21,19},{27,27,30,48},{87,53,19,9},{59,14,15,49}};
double RST44[4][4]={{-11,-11,-7,-11},{-15,-17,-16,-32},{-69,-37,-5,3},{-49,-6,-9,-45}};
double RMT44T44[4][4]={{816,412,192,304},{1155,583,379,687},{1146,668,466,758},{486,308,222,338}};

printf("Execution des tests unitaires.\n");
Transpose_Mat(2,4,T24,R42); if (!Equal_Mat_Mat(RTT24,R42)) error("Erreur calcul Transposition 2x4");
Transpose_Mat(4,4,T44a,R44); if (!Equal_Mat_Mat(RTT44,R44)) error("Erreur calcul Transposition 4x4");
Inverse_Mat_22(2,2,T22a,R22); if (!Equal_Mat_Mat(RInvT22,R22)) error("Erreur calcul Inversion 2x2");
Add_Mat_Mat(2,2,T22a,2,2,T22b,R22); if (!Equal_Mat_Mat(RAT22,R22)) error("Erreur calcul Addition 2x2");
Add_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RAT44,R44)) error("Erreur calcul Addition 4x4");
Add_Mat_Mat(4,1,T41a,4,1,T41b,R41); if (!Equal_Mat_Mat(RAT41,R41)) error("Erreur calcul Addition 4x1");
Sub_Mat_Mat(2,1,T21a,2,1,T21b,R21); if (!Equal_Mat_Mat(RST21,R21)) error("Erreur calcul Soustraction 2x1");
Sub_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RST44,R44)) error("Erreur calcul Soustraction 4x4");
Mul_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RMT44T44,R44)) error("Erreur calcul Multiplication 4x4 4x4");
Mul_Mat_Mat(4,4,T44a,4,1,T41a,R41); if (!Equal_Mat_Mat(RMT44T41,R41)) error("Erreur calcul Multiplication 4x4 4x1");
Mul_Mat_Mat(4,4,T44a,4,2,T42a,R42); if (!Equal_Mat_Mat(RMT44T42,R42)) error("Erreur calcul Multiplication 4x4 4x2");
Mul_Mat_Mat(4,2,T42a,2,1,T21a,R41); if (!Equal_Mat_Mat(RMT42T21,R41)) error("Erreur calcul Multiplication 4x2 2x1");
Mul_Mat_Mat(4,2,T42a,2,2,T22a,R42); if (!Equal_Mat_Mat(RMT42T22,R42)) error("Erreur calcul Multiplication 4x2 2x2");
Mul_Mat_Mat(4,2,T42a,2,4,T24,R44); if (!Equal_Mat_Mat(RMT42T24,R44)) error("Erreur calcul Multiplication 4x2 2x4");
Mul_Mat_Mat(2,4,T24,4,1,T41a,R21); if (!Equal_Mat_Mat(RMT24T41,R21)) error("Erreur calcul Multiplication 2x4 4x1");
Mul_Mat_Mat(2,4,T24,4,2,T42a,R22); if (!Equal_Mat_Mat(RMT24T42,R22)) error("Erreur calcul Multiplication 2x4 4x2");
Mul_Mat_Mat(2,4,T24,4,4,T44a,R24); if (!Equal_Mat_Mat(RMT24T44,R24)) error("Erreur calcul Multiplication 2x4 4x4");
printf("Test unitaires OK.\n");
}

int main(int argc,char **argv){

tests_unitaires();

FILE* fichier = fopen("pos_t_x_y.dat","r");
if (fichier == NULL)
error("Impossible d'ouvrir le fichier GPGGA_data.dat");

FILE * Fout = Fout = fopen("output.dat","w");
if (fichier == NULL)
error("Impossible d'ouvrir le fichier output.dat");

printf("Kalman\n");
double t = 0;
double t0,x0,y0;
double xobs,yobs;
double oldx,oldy;
double dx=0,dy=0,dt=0.1;
int cpt = 0;

// kalman param
double sigma_etat = 10.0;
double sigma_observation = 2.0;
double X[4][1] = {{0},{0},{0},{0}};

double P[4][4] = {{sigma_etat*sigma_etat, 0, 0, 0},
{0, sigma_etat*sigma_etat, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}};

double Q[4][4] = {{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0.1, 0},
{0, 0, 0, 0.1}};

double R[2][2] = {{sigma_observation*sigma_observation, 0},
{0 , sigma_observation*sigma_observation}};

double K[4][2];
double H[2][4] = {{1, 0, 0, 0},
{0, 1, 0, 0}};
double HT[4][2];
Transpose_Mat(2,4,H,HT);

double F[4][4] = {{1, 0, dt, 0},
{0, 1, 0, dt},
{0, 0, 1, 0},
{0, 0, 0, 1}};
double FT[4][4];
Transpose_Mat(4,4,F,FT);

double X_1[4][1],X_2[2][1],X_3[2][1],X_4[4][1],X_5[4][1];
double P_1[4][4],P_2[4][4],P_3[4][4],P_4[4][4],P_5[4][4],P_6[4][4];
double K_1[4][2],K_2[2][2],K_3[2][2],K_4[2][2],K_5[4][2],K_6[4][2];


while(fscanf(fichier, "%lf %lf %lf", &t, &xobs, &yobs)>0){
printf("-------------%04d--------------\n",cpt);

if (cpt ==0)
{
t0=t;x0=xobs;y0=yobs;
xobs=xobs-x0;yobs=yobs-y0;
Plot_Mat(F,"F = ");
Plot_Mat(H,"H = ");
Plot_Mat(R,"R = ");
}
else
{
t -= t0;xobs -= x0;yobs -= y0;

debug=1; ///Mettre à 1 pour afficher les matrices.
///Ajouter votre code ci-dessous///

// Kalman
double Mobservation[2][1] ={{xobs},{yobs}};
// X = F*X
Mul_Mat_Mat(4,4,F, 4,1,X, X_1); //Multiplication de F et X, résultat stocké dans X_1
Plot_Mat(X_1," X(k+1|k) = ");

//P = F*P*F'+Q;
Mul_Mat_Mat(4,4,F, 4,4, P,P_1);//P_1=F*P
Mul_Mat_Mat(4,4,P_1, 4,4, FT,P_2);//P_2=P_1*FT=
Add_Mat_Mat(4,4,P_2,4,4,Q, P_3);//P_3=P_2+Q
Plot_Mat(P,"P(k+1|k) = F.P(k|k).FT + Q = ");

// K = P*H' / ( H*P*H' + R);
Mul_Mat_Mat(2,4,H, 4,4, P_3,K_1);//K_1=H*P_3
Mul_Mat_Mat(2,4,K_1, 4,2, HT,K_2);//K_2=K1*HT
Add_Mat_Mat(2,2,K_2,2,2,R, K_3);//K_3=K_2+R
Inverse_Mat_22(2,2,K_3,K_4);//K_4=(K_3)^(-1)
Mul_Mat_Mat(4,4,P_3, 4,2, HT,K_5);//K_5=P_3*HT
Mul_Mat_Mat(4,2,K_5, 2,2, K_4,K_6);//K_6=K_5*K_4

Plot_Mat(K,"K = ");

//X = X + K*([xobs(i);yobs(i)]-H*X);
Mul_Mat_Mat(2,4,H, 4,1, X_1,X_2);//X_2=H*X_1
Sub_Mat_Mat(2,1,Mobservation,2,1,X_2,X_3);//X_3=Mobservation-X_2

//Plot_Mat(Delta,"DELTA = Obs - H.X(k+1|k)");
Plot_Mat(X_3,"DELTA = Obs - H.X(k+1|k)");
Mul_Mat_Mat(4,2,K_6, 2,1,X_3,X_4);//X_4=K_6*X_3
Add_Mat_Mat(4,1,X_1,4,1,X_4,X_5);//X_5=X_1+X_4

Plot_Mat(X_5," X(k+1|k+1) = X(k+1|k) + K.Delta = ");

// P = P - K*H*P;
Mul_Mat_Mat(4,2,K_6, 2,4, H,P_4);//P_4=K_6*H
Mul_Mat_Mat(4,4,P_4, 4,4, P_3,P_5);//P_5=P_4*P_3
Sub_Mat_Mat(4,4,P_3,4,4,P_5, P_6);//P_6=P_3-P_5

Plot_Mat(P_6," P(k+1|k+1) = P(k+1|k) - K.H.P(k+1|k) = ");

/// La matrice X doit contenir la position filtrée ///

int i, j;
for ( i = 0; i <4 ; i++)
{
for ( j = 0; j <1 ; j++)
{
X[i][j] = X_5[i][j];
}

}
for ( i = 0; i <4 ; i++)
{
for ( j = 0; j <4 ; j++)
{
P[i][j] = P_6[i][j];

}
}

}
t = cpt * dt;
dx = (xobs - oldx)/dt;
dy = (yobs - oldy)/dt;
fprintf(Fout,"%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n",t,xobs,yobs,sqrt(dx*dx+dy*dy)*dt,X[0][0],X[1][0],X[2][0],X[3][0],sqrt(X[2][0]*X[2][0]+X[3][0]*X[3][0])*dt);
oldx = xobs;
oldy = yobs;
cpt ++;
}
fclose(Fout);
fclose(fichier);

system ("gnuplot -p -e \"plot 'output.dat' u 5:6 w l, '' u 2:3 w l\";");
system ("gnuplot -p -e \"plot 'output.dat' u 1:9 w l, '' u 1:4 w l\";");
system ("gnuplot -p -e \"plot 'output.dat' u 9 w l , 'vitesse_reelle.dat' u 2 w l\";");
return 0;
}
(2-2/6)