Projet

Général

Profil

« Précédent | Suivant » 

Révision 718

Ajouté par Massamba FALL il y a presque 4 ans

DEBUT TP n°C1

Voir les différences:

branch/fall/sp4b1/SP4b1/SP4b1.c
}
branch/fall/sp4a12/main.c
comp = 0;
}
i=i+1;
end_comp=type[i];
end_comp=type[i];v;
}
return comp;
......
if (decode_nombre("7541",2)!=75)
{void test_decode_nombre(void)
{
if (decode_nombre("7541",1)!=7)https://forge.clermont-universite.fr/documents/756
{
printf("Erreur test unitaire decode nombre\n");
exit(-1);
}
if (decode_nombre("7541",2)!=75)
{
printf("Erreur test unitaire decode nombre\n");
exit(-1);
}
if (decode_nombre("7541",3)!=754)
{
printf("Erreur test unitaire decode nombre\n");
exit(-1);
}
}
printf("Erreur test unitaire decode nombre\n");
exit(-1);
}
if (decode_nombre("7541",3)!=754)
{
printf("Erreur test unitaire decode nombre\n");
exit(-1);
}
}
exit(-1);
}
}
// Ne pas modifier cette fonction
int main(int argc,char ** argv)
{
tests_unitaires();
// Affichage des trames definies dans la table trames.
printf ("Trames de tests tableau trames:\n");
int i=0;
while (trames[i])
traitement(trames[i++]);
if (!trame_init())
exit(-1);
// Affichage des trames du fichier gps.log
char *trame;
printf ("Trames de tests du fichier gps.log\n");
while ((trame = trame_suivante()))
traitement(trame);
return 0;
}
/ Pour compiler : gcc sp4a3_kalman.c -lm
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "sp4a3_kalman_extra.h"
void Add_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double out[na][ma]){
int I,J=0;
for (I=0; I<na; I++){
for (J=0; J<ma; J++){
out[I][J] = A[I][J]+B[I][J];
}
}
}
void Inverse_Mat_22(int n,int m,double A[n][m],double B[n][m]){
float d;
d=1/((A[0][0]*A[1][1])-(A[0][1]*A[1][0]));
B[0][0]=d*A[1][1];
B[1][1]=d*A[0][0];
B[0][1]=-d*(A[0][1]);
B[1][0]=-d*(A[1][0]);
}
void Transpose_Mat(int n,int m,double A[n][m],double R[m][n]){
int i,j;
for (i=0;i<n;i++)
for (j=0;j<m;j++)
R[j][i]=A[i][j];
}
void Sub_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double out[na][ma]){
int I,J=0;
for (I=0; I<na; I++){
for (J=0; J<ma; J++){
out[I][J] = A[I][J]-B[I][J];
}
}
}
void Mul_Mat_Mat(int na,int ma,double A[na][ma], int nb,int mb,double B[nb][mb], double out[na][mb]){
int i=0;
int j=0;
int k=0;
for(i = 0; i < na; i++)
{
for(j = 0; j < mb; j++)
{
out[i][j]=0;
for(k = 0; k < ma; k++)
{
out[i][j] += A[i][k] * B[k][j];
}
}
}
}
void tests_unitaires(void){
//Matrices d'entr?e
double T21a[2][1]={{7},{-5}};
double T21b[2][1]={{-3},{46}};
double T22a[2][2]={{12,78},{-5,13}};
double T22b[2][2]={{-25,36},{7,42}};
double T24[2][4]={{7,-71,-12,3},{41,123,-5,10}};
double T41a[4][1]={{45},{-123},{-78},{-410}};
double T41b[4][1]={{-10},{45},{27},{-9}};
double T42a[4][2]={{-73,45},{10,12},{-41,-35},{8,-23}};
double T44a[4][4]={{1,2,7,4},{6,5,7,8},{9,8,7,6},{5,4,3,2}};
double T44b[4][4]={{12,13,14,15},{21,22,23,40},{78,45,12,3},{54,10,12,47}};
//Matrices r?sultat
double R21[2][1],R22[2][2],R24[2][4],R41[4][1],R42[4][2],R44[4][4];
//Matrices de validation
double RST21[2][1]={{10},{-51}};
double RInvT22[2][2]={{0.02380952380952381,-0.1428571428571428},{0.009157509157509158,0.02197802197802198}};
double RAT22[2][2]={{-13,114},{2,55}};
double RTT24[4][2]={{7,41},{-71,123},{-12,-5},{3,10}};
double RMT24T41[2][1]={{8754},{-16994}};
double RMT24T42[2][2]={{-705,-186},{-1478,3266}};
double RMT24T44[2][4]={{-512,-425,-523,-606},{784,697,1143,1138}};
double RAT41[4][1]={{35},{-78},{-51},{-419}};
double RMT42T21[4][1]={{-736},{10},{-112},{171}};
double RMT42T22[4][2]={{-1101,-5109},{60,936},{-317,-3653},{211,325}};
double RMT42T24[4][4]={{1334,10718,651,231},{562,766,-180,150},{-1722,-1394,667,-473},{-887,-3397,19,-206}};
double RTT44[4][4]={{1,6,9,5},{2,5,8,4},{7,7,7,3},{4,8,6,2}};
double RMT44T41[4][1]={{-2387},{-4171},{-3585},{-1321}};
double RMT44T42[4][2]={{-308,-268},{-611,-99},{-816,118},{-432,122}};
double RAT44[4][4]={{13,15,21,19},{27,27,30,48},{87,53,19,9},{59,14,15,49}};
double RST44[4][4]={{-11,-11,-7,-11},{-15,-17,-16,-32},{-69,-37,-5,3},{-49,-6,-9,-45}};
double RMT44T44[4][4]={{816,412,192,304},{1155,583,379,687},{1146,668,466,758},{486,308,222,338}};
printf("Execution des tests unitaires.\n");
Transpose_Mat(2,4,T24,R42); if (!Equal_Mat_Mat(RTT24,R42)) error("Erreur calcul Transposition 2x4");
Transpose_Mat(4,4,T44a,R44); if (!Equal_Mat_Mat(RTT44,R44)) error("Erreur calcul Transposition 4x4");
Inverse_Mat_22(2,2,T22a,R22); if (!Equal_Mat_Mat(RInvT22,R22)) error("Erreur calcul Inversion 2x2");
Add_Mat_Mat(2,2,T22a,2,2,T22b,R22); if (!Equal_Mat_Mat(RAT22,R22)) error("Erreur calcul Addition 2x2");
Add_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RAT44,R44)) error("Erreur calcul Addition 4x4");
Add_Mat_Mat(4,1,T41a,4,1,T41b,R41); if (!Equal_Mat_Mat(RAT41,R41)) error("Erreur calcul Addition 4x1");
Sub_Mat_Mat(2,1,T21a,2,1,T21b,R21); if (!Equal_Mat_Mat(RST21,R21)) error("Erreur calcul Soustraction 2x1");
Sub_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RST44,R44)) error("Erreur calcul Soustraction 4x4");
Mul_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RMT44T44,R44)) error("Erreur calcul Multiplication 4x4 4x4");
Mul_Mat_Mat(4,4,T44a,4,1,T41a,R41); if (!Equal_Mat_Mat(RMT44T41,R41)) error("Erreur calcul Multiplication 4x4 4x1");
Mul_Mat_Mat(4,4,T44a,4,2,T42a,R42); if (!Equal_Mat_Mat(RMT44T42,R42)) error("Erreur calcul Multiplication 4x4 4x2");
Mul_Mat_Mat(4,2,T42a,2,1,T21a,R41); if (!Equal_Mat_Mat(RMT42T21,R41)) error("Erreur calcul Multiplication 4x2 2x1");
Mul_Mat_Mat(4,2,T42a,2,2,T22a,R42); if (!Equal_Mat_Mat(RMT42T22,R42)) error("Erreur calcul Multiplication 4x2 2x2");
Mul_Mat_Mat(4,2,T42a,2,4,T24,R44); if(!Equal_Mat_Mat(RMT42T24,R44)) error("Erreur calcul Multiplication 4x2 2x4");
Mul_Mat_Mat(2,4,T24,4,1,T41a,R21); if (!Equal_Mat_Mat(RMT24T41,R21)) error("Erreur calcul Multiplication 2x4 4x1");
Mul_Mat_Mat(2,4,T24,4,2,T42a,R22); if (!Equal_Mat_Mat(RMT24T42,R22)) error("Erreur calcul Multiplication 2x4 4x2");
Mul_Mat_Mat(2,4,T24,4,4,T44a,R24); if (!Equal_Mat_Mat(RMT24T44,R24)) error("Erreur calcul Multiplication 2x4 4x4");
printf("Test unitaires OK.\n");
}
int main(int argc,char **argv){
tests_unitaires();
FILE* fichier = fopen("pos_t_x_y.dat","r");
if (fichier == NULL)
error("Impossible d'ouvrir le fichier GPGGA_data.dat");
FILE * Fout = Fout = fopen("output.dat","w");
if (fichier == NULL)
error("Impossible d'ouvrir le fichier output.dat");
printf("Kalman\n");
double t = 0;
double t0,x0,y0;
double x,y;
double oldx,oldy;
double dx=0,dy=0,dt=0.1;
int cpt = 0;
// kalman param
double sigma_etat = 10.0;
double sigma_observation = 2.0;
double X[4][1] = {{0},{0},{0},{0}};
double P[4][4] = {{sigma_etat*sigma_etat, 0, 0, 0},
{0, sigma_etat*sigma_etat, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}};
double Q[4][4] = {{0, 0, 0, 0/ Pour compiler : gcc sp4a3_kalman.c -lm
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "sp4a3_kalman_extra.h"
void Add_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double out[na][ma]){
int I,J=0;
for (I=0; I<na; I++){
for (J=0; J<ma; J++){
out[I][J] = A[I][J]+B[I][J];
}
}
}
void Inverse_Mat_22(int n,int m,double A[n][m],double B[n][m]){
float d;
d=1/((A[0][0]*A[1][1])-(A[0][1]*A[1][0]));
B[0][0]=d*A[1][1];
B[1][1]=d*A[0][0];
B[0][1]=-d*(A[0][1]);
B[1][0]=-d*(A[1][0]);
}
void Transpose_Mat(int n,int m,double A[n][m],double R[m][n]){
int i,j;
for (i=0;i<n;i++)
for (j=0;j<m;j++)
R[j][i]=A[i][j];
}
void Sub_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double out[na][ma]){
int I,J=0;
for (I=0; I<na; I++){
for (J=0; J<ma; J++){
out[I][J] = A[I][J]-B[I][J];
}
}
}
void Mul_Mat_Mat(int na,int ma,double A[na][ma], int nb,int mb,double B[nb][mb], double out[na][mb]){
int i=0;
int j=0;
int k=0;
for(i = 0; i < na; i++)
{
for(j = 0; j < mb; j++)
{
out[i][j]=0;
for(k = 0; k < ma; k++)
{
out[i][j] += A[i][k] * B[k][j];
}
}
}
}
void tests_unitaires(void){
//Matrices d'entr?e
double T21a[2][1]={{7},{-5}};
double T21b[2][1]={{-3},{46}};
double T22a[2][2]={{12,78},{-5,13}};
double T22b[2][2]={{-25,36},{7,42}};
double T24[2][4]={{7,-71,-12,3},{41,123,-5,10}};
double T41a[4][1]={{45},{-123},{-78},{-410}};
double T41b[4][1]={{-10},{45},{27},{-9}};
double T42a[4][2]={{-73,45},{10,12},{-41,-35},{8,-23}};
double T44a[4][4]={{1,2,7,4},{6,5,7,8},{9,8,7,6},{5,4,3,2}};
double T44b[4][4]={{12,13,14,15},{21,22,23,40},{78,45,12,3},{54,10,12,47}};
//Matrices r?sultat
double R21[2][1],R22[2][2],R24[2][4],R41[4][1],R42[4][2],R44[4][4];
//Matrices de validation
double RST21[2][1]={{10},{-51}};
double RInvT22[2][2]={{0.02380952380952381,-0.1428571428571428},{0.009157509157509158,0.02197802197802198}};
double RAT22[2][2]={{-13,114},{2,55}};
double RTT24[4][2]={{7,41},{-71,123},{-12,-5},{3,10}};
double RMT24T41[2][1]={{8754},{-16994}};
double RMT24T42[2][2]={{-705,-186},{-1478,3266}};
double RMT24T44[2][4]={{-512,-425,-523,-606},{784,697,1143,1138}};
double RAT41[4][1]={{35},{-78},{-51},{-419}};
double RMT42T21[4][1]={{-736},{10},{-112},{171}};
double RMT42T22[4][2]={{-1101,-5109},{60,936},{-317,-3653},{211,325}};
double RMT42T24[4][4]={{1334,10718,651,231},{562,766,-180,150},{-1722,-1394,667,-473},{-887,-3397,19,-206}};
double RTT44[4][4]={{1,6,9,5},{2,5,8,4},{7,7,7,3},{4,8,6,2}};
double RMT44T41[4][1]={{-2387},{-4171},{-3585},{-1321}};
double RMT44T42[4][2]={{-308,-268},{-611,-99},{-816,118},{-432,122}};
double RAT44[4][4]={{13,15,21,19},{27,27,30,48},{87,53,19,9},{59,14,15,49}};
double RST44[4][4]={{-11,-11,-7,-11},{-15,-17,-16,-32},{-69,-37,-5,3},{-49,-6,-9,-45}};
double RMT44T44[4][4]={{816,412,192,304},{1155,583,379,687},{1146,668,466,758},{486,308,222,338}};
printf("Execution des tests unitaires.\n");
Transpose_Mat(2,4,T24,R42); if (!Equal_Mat_Mat(RTT24,R42)) error("Erreur calcul Transposition 2x4");
Transpose_Mat(4,4,T44a,R44); if (!Equal_Mat_Mat(RTT44,R44)) error("Erreur calcul Transposition 4x4");
Inverse_Mat_22(2,2,T22a,R22); if (!Equal_Mat_Mat(RInvT22,R22)) error("Erreur calcul Inversion 2x2");
Add_Mat_Mat(2,2,T22a,2,2,T22b,R22); if (!Equal_Mat_Mat(RAT22,R22)) error("Erreur calcul Addition 2x2");
Add_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RAT44,R44)) error("Erreur calcul Addition 4x4");
Add_Mat_Mat(4,1,T41a,4,1,T41b,R41); if (!Equal_Mat_Mat(RAT41,R41)) error("Erreur calcul Addition 4x1");
Sub_Mat_Mat(2,1,T21a,2,1,T21b,R21); if (!Equal_Mat_Mat(RST21,R21)) error("Erreur calcul Soustraction 2x1");
Sub_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RST44,R44)) error("Erreur calcul Soustraction 4x4");
Mul_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RMT44T44,R44)) error("Erreur calcul Multiplication 4x4 4x4");
Mul_Mat_Mat(4,4,T44a,4,1,T41a,R41); if (!Equal_Mat_Mat(RMT44T41,R41)) error("Erreur calcul Multiplication 4x4 4x1");
Mul_Mat_Mat(4,4,T44a,4,2,T42a,R42); if (!Equal_Mat_Mat(RMT44T42,R42)) error("Erreur calcul Multiplication 4x4 4x2");
Mul_Mat_Mat(4,2,T42a,2,1,T21a,R41); if (!Equal_Mat_Mat(RMT42T21,R41)) error("Erreur calcul Multiplication 4x2 2x1");
Mul_Mat_Mat(4,2,T42a,2,2,T22a,R42); if (!Equal_Mat_Mat(RMT42T22,R42)) error("Erreur calcul Multiplication 4x2 2x2");
Mul_Mat_Mat(4,2,T42a,2,4,T24,R44); if (!Equal_Mat_Mat(RMT42T24,R44)) error("Erreur calcul Multiplication 4x2 2x4");
Mul_Mat_Mat(2,4,T24,4,1,T41a,R21); if (!Equal_Mat_Mat(RMT24T41,R21)) error("Erreur calcul Multiplication 2x4 4x1");
Mul_Mat_Mat(2,4,T24,4,2,T42a,R22); if (!Equal_Mat_Mat(RMT24T42,R22)) error("Erreur calcul Multiplication 2x4 4x2");
Mul_Mat_Mat(2,4,T24,4,4,T44a,R24); if (!Equal_Mat_Mat(RMT24T44,R24)) error("Erreur calcul Multiplication 2x4 4x4");
printf("Test unitaires OK.\n");
}
int main(int argc,char **argv){
tests_unitaires();
FILE* fichier = fopen("pos_t_x_y.dat","r");
if (fichier == NULL)
error("Impossible d'ouvrir le fichier GPGGA_data.dat");
FILE * Fout = Fout = fopen("output.dat","w");
if (fichier == NULL)
error("Impossible d'ouvrir le fichier output.dat");
printf("Kalman\n");
double t = 0;
double t0,x0,y0;
double x,y;
double oldx,oldy;
double dx=0,dy=0,dt=0.1;
int cpt = 0;
// kalman param
double sigma_etat = 10.0;
double sigma_observation = 2.0;
double X[4][1] = {{0},{0},{0},{0}};
double P[4][4] = {{sigma_etat*sigma_etat, 0, 0, 0},
{0, sigma_etat*sigma_etat, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}};
double Q[4][4] = {{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0.1, 0},
{0, 0, 0, 0.1}};
double R[2][2] = {{sigma_observation*sigma_observation, 0},
{0 , sigma_observation*sigma_observation}};
double K[4][2];
double H[2][4] = {{1, 0, 0, 0},
{0, 1, 0, 0}};
double HT[4][2];
Transpose_Mat(2,4,H,HT);
double F[4][4] = {{1, 0, dt, 0},
{0, 1, 0, dt},
{0, 0, 1, 0},
{0, 0, 0, 1}};
double FT[4][4];
Transpose_Mat(4,4,F,FT);
while(fscanf(fichier, "%lf %lf %lf", &t, &x, &y)>0){
printf("-------------%04d--------------\n",cpt);
if (cpt ==0)
{
t0=t;x0=x;y0=y;
x=x-x0;y=y-y0;
Plot_Mat(F,"F = ");
Plot_Mat(H,"H = ");
Plot_Mat(R,"R = ");
}
else
{
t -= t0;x -= x0;y -= y0;
debug=0; ///Mettre ? 1 pour afficher les matrices.
///Ajouter votre code ci-dessous///
// Kalman
// X = F*X
Plot_Mat(X," X(k+1|k) = ");
//P = F*P*F'+Q;
Plot_Mat(P,"P(k+1|k) = F.P(k|k).FT + Q = ");
// K = P*H' / ( H*P*H' + R);
Plot_Mat(K,"K = ");
//X = X + K*([xb(i);yb(i)]-H*X);
//Plot_Mat(Delta,"DELTA = Obs - H.X(k+1|k)");
Plot_Mat(X," X(k+1|k+1) = X(k+1|k) + K.Delta = ");
// P = P - K*H*P;
Plot_Mat(P," P(k+1|k+1) = P(k+1|k) - K.H.P(k+1|k) = ");
/// La matrice X doit contenir la position filtr?e ///
}
t = cpt * dt;
dx = (x - oldx)/dt;
dy = (y - oldy)/dt;
fprintf(Fout,"%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n",t,x,y,sqrt(dx*dx+dy*dy)*dt,X[0][0],X[1][0],X[2][0],X[3][0],sqrt(X[2][0]*X[2][0]+X[3][0]*X[3][0])*dt);
oldx = x;
oldy = y;
cpt ++;
}
fclose(Fout);
fclose(fichier);
system ("gnuplot -p -e \"plot 'output.dat' u 5:6 w l, '' u 2:3 w l\";");
system ("gnuplot -p -e \"plot 'output.dat' u 1:9 w l, '' u 1:4 w l\";");
system ("gnuplot -p -e \"plot 'vitesse_reelle.dat' u 2 w l, 'output.dat' u 9 w l\";");
return 0;
}},
{0, 0, 0, 0},
{0, 0, 0.1, 0},
{0, 0, 0, 0.1}};
double R[2][2] = {{sigma_observation*sigma_observation, 0},
{0 , sigma_observation*sigma_observation}};
double K[4][2];
double H[2][4] = {{1, 0, 0, 0},
{0, 1, 0, 0}};
double HT[4][2];
Transpose_Mat(2,4,H,HT);
double F[4][4] = {{1, 0, dt, 0},
{0, 1, 0, dt},
{0, 0, 1, 0},
{0, 0, 0, 1}};
double FT[4][4];
Transpose_Mat(4,4,F,FT);
while(fscanf(fichier, "%lf %lf %lf", &t, &x, &y)>0){
printf("-------------%04d--------------\n",cpt);
if (cpt ==0)
{
t0=t;x0=x;y0=y;
x=x-x0;y=y-y0;/ Pour compiler : gcc sp4a3_kalman.c -lm
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "sp4a3_kalman_extra.h"
void Add_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double out[na][ma]){
int I,J=0;
for (I=0; I<na; I++){
for (J=0; J<ma; J++){
out[I][J] = A[I][J]+B[I][J];
}
}
}
void Inverse_Mat_22(int n,int m,double A[n][m],double B[n][m]){
float d;
d=1/((A[0][0]*A[1][1])-(A[0][1]*A[1][0]));
B[0][0]=d*A[1][1];
B[1][1]=d*A[0][0];
B[0][1]=-d*(A[0][1]);
B[1][0]=-d*(A[1][0]);
}
void Transpose_Mat(int n,int m,double A[n][m],double R[m][n]){
int i,j;
for (i=0;i<n;i++)
for (j=0;j<m;j++)
R[j][i]=A[i][j];
}
void Sub_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double out[na][ma]){
int I,J=0;
for (I=0; I<na; I++){
for (J=0; J<ma; J++){
out[I][J] = A[I][J]-B[I][J];
}
}
}
void Mul_Mat_Mat(int na,int ma,double A[na][ma], int nb,int mb,double B[nb][mb], double out[na][mb]){
int i=0;
int j=0;
int k=0;
for(i = 0; i < na; i++)
{
for(j = 0; j < mb; j++)
{
out[i][j]=0;
for(k = 0; k < ma; k++)
{
out[i][j] += A[i][k] * B[k][j];
}
}
}
}
void tests_unitaires(void){
//Matrices d'entr?e
double T21a[2][1]={{7},{-5}};
double T21b[2][1]={{-3},{46}};
double T22a[2][2]={{12,78},{-5,13}};
double T22b[2][2]={{-25,36},{7,42}};
double T24[2][4]={{7,-71,-12,3},{41,123,-5,10}};
double T41a[4][1]={{45},{-123},{-78},{-410}};
double T41b[4][1]={{-10},{45},{27},{-9}};
double T42a[4][2]={{-73,45},{10,12},{-41,-35},{8,-23}};
double T44a[4][4]={{1,2,7,4},{6,5,7,8},{9,8,7,6},{5,4,3,2}};
double T44b[4][4]={{12,13,14,15},{21,22,23,40},{78,45,12,3},{54,10,12,47}};
//Matrices r?sultat
double R21[2][1],R22[2][2],R24[2][4],R41[4][1],R42[4][2],R44[4][4];
//Matrices de validation
double RST21[2][1]={{10},{-51}};
double RInvT22[2][2]={{0.02380952380952381,-0.1428571428571428},{0.009157509157509158,0.02197802197802198}};
double RAT22[2][2]={{-13,114},{2,55}};
double RTT24[4][2]={{7,41},{-71,123},{-12,-5},{3,10}};
double RMT24T41[2][1]={{8754},{-16994}};
double RMT24T42[2][2]={{-705,-186},{-1478,3266}};
double RMT24T44[2][4]={{-512,-425,-523,-606},{784,697,1143,1138}};
double RAT41[4][1]={{35},{-78},{-51},{-419}};
double RMT42T21[4][1]={{-736},{10},{-112},{171}};
double RMT42T22[4][2]={{-1101,-5109},{60,936},{-317,-3653},{211,325}};
double RMT42T24[4][4]={{1334,10718,651,231},{562,766,-180,150},{-1722,-1394,667,-473},{-887,-3397,19,-206}};
double RTT44[4][4]={{1,6,9,5},{2,5,8,4},{7,7,7,3},{4,8,6,2}};
double RMT44T41[4][1]={{-2387},{-4171},{-3585},{-1321}};
double RMT44T42[4][2]={{-308,-268},{-611,-99},{-816,118},{-432,122}};
double RAT44[4][4]={{13,15,21,19},{27,27,30,48},{87,53,19,9},{59,14,15,49}};
double RST44[4][4]={{-11,-11,-7,-11},{-15,-17,-16,-32},{-69,-37,-5,3},{-49,-6,-9,-45}};
double RMT44T44[4][4]={{816,412,192,304},{1155,583,379,687},{1146,668,466,758},{486,308,222,338}};
/ Pour compiler : gcc sp4a3_kalman.c -lm
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "sp4a3_kalman_extra.h"
void Add_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double out[na][ma]){
int I,J=0;
for (I=0; I<na; I++){
for (J=0; J<ma; J++){
out[I][J] = A[I][J]+B[I][J];
}
}
}
void Inverse_Mat_22(int n,int m,double A[n][m],double B[n][m]){
float d;
d=1/((A[0][0]*A[1][1])-(A[0][1]*A[1][0]));
B[0][0]=d*A[1][1];
B[1][1]=d*A[0][0];
B[0][1]=-d*(A[0][1]);
B[1][0]=-d*(A[1][0]);
}
void Transpose_Mat(int n,int m,double A[n][m],double R[m][n]){
int i,j;
for (i=0;i<n;i++)
for (j=0;j<m;j++)
R[j][i]=A[i][j];
}
void Sub_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double out[na][ma]){
int I,J=0;
for (I=0; I<na; I++){
for (J=0; J<ma; J++){
out[I][J] = A[I][J]-B[I][J];
}
}
}
void Mul_Mat_Mat(int na,int ma,double A[na][ma], int nb,int mb,double B[nb][mb], double out[na][mb]){
int i=0;
int j=0;
int k=0;
for(i = 0; i < na; i++)
{
for(j = 0; j < mb; j++)
{
out[i][j]=0;
for(k = 0; k < ma; k++)
{
out[i][j] += A[i][k] * B[k][j];
}
}
}
}
void tests_unitaires(void){
//Matrices d'entr?e
double T21a[2][1]={{7},{-5}};
double T21b[2][1]={{-3},{46}};
double T22a[2][2]={{12,78},{-5,13}};
double T22b[2][2]={{-25,36},{7,42}};
double T24[2][4]={{7,-71,-12,3},{41,123,-5,10}};
double T41a[4][1]={{45},{-123},{-78},{-410}};
double T41b[4][1]={{-10},{45},{27},{-9}};
double T42a[4][2]={{-73,45},{10,12},{-41,-35},{8,-23}};
double T44a[4][4]={{1,2,7,4},{6,5,7,8},{9,8,7,6},{5,4,3,2}};
double T44b[4][4]={{12,13,14,15},{21,22,23,40},{78,45,12,3},{54,10,12,47}};
//Matrices r?sultat
double R21[2][1],R22[2][2],R24[2][4],R41[4][1],R42[4][2],R44[4][4];
//Matrices de validation
double RST21[2][1]={{10},{-51}};
double RInvT22[2][2]={{0.02380952380952381,-0.1428571428571428},{0.009157509157509158,0.02197802197802198}};
double RAT22[2][2]={{-13,114},{2,55}};
double RTT24[4][2]={{7,41},{-71,123},{-12,-5},{3,10}};
double RMT24T41[2][1]={{8754},{-16994}};
double RMT24T42[2][2]={{-705,-186},{-1478,3266}};
double RMT24T44[2][4]={{-512,-425,-523,-606},{784,697,1143,1138}};
double RAT41[4][1]={{35},{-78},{-51},{-419}};
double RMT42T21[4][1]={{-736},{10},{-112},{171}};
double RMT42T22[4][2]={{-1101,-5109},{60,936},{-317,-3653},{211,325}};
double RMT42T24[4][4]={{1334,10718,651,231},{562,766,-180,150},{-1722,-1394,667,-473},{-887,-3397,19,-206}};
double RTT44[4][4]={{1,6,9,5},{2,5,8,4},{7,7,7,3},{4,8,6,2}};
double RMT44T41[4][1]={{-2387},{-4171},{-3585},{-1321}};
double RMT44T42[4][2]={{-308,-268},{-611,-99},{-816,118},{-432,122}};
double RAT44[4][4]={{13,15,21,19},{27,27,30,48},{87,53,19,9},{59,14,15,49}};
double RST44[4][4]={{-11,-11,-7,-11},{-15,-17,-16,-32},{-69,-37,-5,3},{-49,-6,-9,-45}};
double RMT44T44[4][4]={{816,412,192,304},{1155,583,379,687},{1146,668,466,758},{486,308,222,338}};
printf("Execution des tests unitaires.\n");
Transpose_Mat(2,4,T24,R42); if (!Equal_Mat_Mat(RTT24,R42)) error("Erreur calcul Transposition 2x4");
Transpose_Mat(4,4,T44a,R44); if (!Equal_Mat_Mat(RTT44,R44)) error("Erreur calcul Transposition 4x4");
Inverse_Mat_22(2,2,T22a,R22); if (!Equal_Mat_Mat(RInvT22,R22)) error("Erreur calcul Inversion 2x2");
Add_Mat_Mat(2,2,T22a,2,2,T22b,R22); if (!Equal_Mat_Mat(RAT22,R22)) error("Erreur calcul Addition 2x2");
Add_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RAT44,R44)) error("Erreur calcul Addition 4x4");
Add_Mat_Mat(4,1,T41a,4,1,T41b,R41); if (!Equal_Mat_Mat(RAT41,R41)) error("Erreur calcul Addition 4x1");
Sub_Mat_Mat(2,1,T21a,2,1,T21b,R21); if (!Equal_Mat_Mat(RST21,R21)) error("Erreur calcul Soustraction 2x1");
Sub_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RST44,R44)) error("Erreur calcul Soustraction 4x4");
Mul_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RMT44T44,R44)) error("Erreur calcul Multiplication 4x4 4x4");
Mul_Mat_Mat(4,4,T44a,4,1,T41a,R41); if (!Equal_Mat_Mat(RMT44T41,R41)) error("Erreur calcul Multiplication 4x4 4x1");
Mul_Mat_Mat(4,4,T44a,4,2,T42a,R42); if (!Equal_Mat_Mat(RMT44T42,R42)) error("Erreur calcul Multiplication 4x4 4x2");
Mul_Mat_Mat(4,2,T42a,2,1,T21a,R41); if (!Equal_Mat_Mat(RMT42T21,R41)) error("Erreur calcul Multiplication 4x2 2x1");
Mul_Mat_Mat(4,2,T42a,2,2,T22a,R42); if (!Equal_Mat_Mat(RMT42T22,R42)) error("Erreur calcul Multiplication 4x2 2x2");
Mul_Mat_Mat(4,2,T42a,2,4,T24,R44); if (!Equal_Mat_Mat(RMT42T24,R44)) error("Erreur calcul Multiplication 4x2 2x4");
Mul_Mat_Mat(2,4,T24,4,1,T41a,R21); if (!Equal_Mat_Mat(RMT24T41,R21)) error("Erreur calcul Multiplication 2x4 4x1");
Mul_Mat_Mat(2,4,T24,4,2,T42a,R22); if (!Equal_Mat_Mat(RMT24T42,R22)) error("Erreur calcul Multiplication 2x4 4x2");
Mul_Mat_Mat(2,4,T24,4,4,T44a,R24); if (!Equal_Mat_Mat(RMT24T44,R24)) error("Erreur calcul Multiplication 2x4 4x4");
printf("Test unitaires OK.\n");
}
int main(int argc,char **argv){
tests_unitaires();
FILE* fichier = fopen("pos_t_x_y.dat","r");
if (fichier == NULL)
error("Impossible d'ouvrir le fichier GPGGA_data.dat");
FILE * Fout = Fout = fopen("output.dat","w");
if (fichier == NULL)
error("Impossible d'ouvrir le fichier output.dat");
printf("Kalman\n");
double t = 0;
double t0,x0,y0;
double x,y;
double oldx,oldy;
double dx=0,dy=0,dt=0.1;
int cpt = 0;
// kalman param
double sigma_etat = 10.0;
double sigma_observation = 2.0;
double X[4][1] = {{0},{0},{0},{0}};
double P[4][4] = {{sigma_etat*sigma_etat, 0, 0, 0},
{0, sigma_etat*sigma_etat, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}};
double Q[4][4] = {{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0.1, 0},
{0, 0, 0, 0.1}};
double R[2][2] = {{sigma_observation*sigma_observation, 0},
{0 , sigma_observation*sigma_observation}};
double K[4][2];
double H[2][4] = {{1, 0, 0, 0},
{0, 1, 0, 0}};
double HT[4][2];
Transpose_Mat(2,4,H,HT);
double F[4][4] = {{1, 0, dt, 0},
{0, 1, 0, dt},
{0, 0, 1, 0},
{0, 0, 0, 1}};
double FT[4][4];
Transpose_Mat(4,4,F,FT);
while(fscanf(fichier, "%lf %lf %lf", &t, &x, &y)>0){
printf("-------------%04d--------------\n",cpt);
if (cpt ==0)
{
t0=t;x0=x;y0=y;
x=x-x0;y=y-y0;
Plot_Mat(F,"F = ");
Plot_Mat(H,"H = ");
Plot_Mat(R,"R = ");
}
else
{
t -= t0;x -= x0;y -= y0;
debug=0; ///Mettre ? 1 pour afficher les matrices.
///Ajouter votre code ci-dessous///
// Kalman
// X = F*X
Plot_Mat(X," X(k+1|k) = ");
//P = F*P*F'+Q;
Plot_Mat(P,"P(k+1|k) = F.P(k|k).FT + Q = ");
// K = P*H' / ( H*P*H' + R);
Plot_Mat(K,"K = ");
//X = X + K*([xb(i);yb(i)]-H*X);
//Plot_Mat(Delta,"DELTA = Obs - H.X(k+1|k)");
Plot_Mat(X," X(k+1|k+1) = X(k+1|k) + K.Delta = ");
// P = P - K*H*P;
Plot_Mat(P," P(k+1|k+1) = P(k+1|k) - K.H.P(k+1|k) = ");
/// La matrice X doit contenir la position filtr?e ///
}
t = cpt * dt;
dx = (x - oldx)/dt;
dy = (y - oldy)/dt;
fprintf(Fout,"%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n",t,x,y,sqrt(dx*dx+dy*dy)*dt,X[0][0],X[1][0],X[2][0],X[3][0],sqrt(X[2][0]*X[2][0]+X[3][0]*X[3][0])*dt);
oldx = x;
oldy = y;
cpt ++;
}
fclose(Fout);
fclose(fichier);
system ("gnuplot -p -e \"plot 'output.dat' u 5:6 w l, '' u 2:3 w l\";");
system ("gnuplot -p -e \"plot 'output.dat' u 1:9 w l, '' u 1:4 w l\";");
system ("gnuplot -p -e \"plot 'vitesse_reelle.dat' u 2 w l, 'output.dat' u 9 w l\";");
return 0;
}
printf("Execution des tests unitaires.\n");
Transpose_Mat(2,4,T24,R42); if (!Equal_Mat_Mat(RTT24,R42)) error("Erreur calcul Transposition 2x4");
Transpose_Mat(4,4,T44a,R44); if (!Equal_Mat_Mat(RTT44,R44)) error("Erreur calcul Transposition 4x4");
Inverse_Mat_22(2,2,T22a,R22); if (!Equal_Mat_Mat(RInvT22,R22)) error("Erreur calcul Inversion 2x2");
Add_Mat_Mat(2,2,T22a,2,2,T22b,R22); if (!Equal_Mat_Mat(RAT22,R22)) error("Erreur calcul Addition 2x2");
Add_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RAT44,R44)) error("Erreur calcul Addition 4x4");
Add_Mat_Mat(4,1,T41a,4,1,T41b,R41); if (!Equal_Mat_Mat(RAT41,R41)) error("Erreur calcul Addition 4x1");
Sub_Mat_Mat(2,1,T21a,2,1,T21b,R21); if (!Equal_Mat_Mat(RST21,R21)) error("Erreur calcul Soustraction 2x1");
Sub_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RST44,R44)) error("Erreur calcul Soustraction 4x4");
Mul_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RMT44T44,R44)) error("Erreur calcul Multiplication 4x4 4x4");
Mul_Mat_Mat(4,4,T44a,4,1,T41a,R41); if (!Equal_Mat_Mat(RMT44T41,R41)) error("Erreur calcul Multiplication 4x4 4x1");
Mul_Mat_Mat(4,4,T44a,4,2,T42a,R42); if (!Equal_Mat_Mat(RMT44T42,R42)) error("Erreur calcul Multiplication 4x4 4x2");
Mul_Mat_Mat(4,2,T42a,2,1,T21a,R41); if (!Equal_Mat_Mat(RMT42T21,R41)) error("Erreur calcul Multiplication 4x2 2x1");
Mul_Mat_Mat(4,2,T42a,2,2,T22a,R42); if (!Equal_Mat_Mat(RMT42T22,R42)) error("Erreur calcul Multiplication 4x2 2x2");
Mul_Mat_Mat(4,2,T42a,2,4,T24,R44); if (!Equal_Mat_Mat(RMT42T24,R44)) error("Erreur calcul Multiplication 4x2 2x4");
Mul_Mat_Mat(2,4,T24,4,1,T41a,R21); if (!Equal_Mat_Mat(RMT24T41,R21)) error("Erreur calcul Multiplication 2x4 4x1");
Mul_Mat_Mat(2,4,T24,4,2,T42a,R22); if (!Equal_Mat_Mat(RMT24T42,R22)) error("Erreur calcul Multiplication 2x4 4x2");
Mul_Mat_Mat(2,4,T24,4,4,T44a,R24); if (!Equal_Mat_Mat(RMT24T44,R24)) error("Erreur calcul Multiplication 2x4 4x4");
printf("Test unitaires OK.\n");
}
int main(int argc,char **argv){
tests_unitaires();
FILE* fichier = fopen("pos_t_x_y.dat","r");
if (fichier == NULL)
error("Impossible d'ouvrir le fichier GPGGA_data.dat");
FILE * Fout = Fout = fopen("output.dat","w");
if (fichier == NULL)
error("Impossible d'ouvrir le fichier output.dat");
printf("Kalman\n");
double t = 0;
double t0,x0,y0;
double x,y;
double oldx,oldy;
double dx=0,dy=0,dt=0.1;
int cpt = 0;
// kalman param
double sigma_etat = 10.0;
double sigma_observation = 2.0;
double X[4][1] = {{0},{0},{0},{0}};
double P[4][4] = {{sigma_etat*sigma_etat, 0, 0, 0},
{0, sigma_etat*sigma_etat, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}};
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include "trame.h"
#include <math.h>
typedef struct // declaration du type position compos? de la latitude et la longitude
{
float latitude;
float longitude;
} position;
typedef struct // declaration du type zone compos? de la position et la vitesse maximale
{
position rpos;
float vitmax;
} zone;
#define Rayon 6378.1370
//Trames de tests ? modifier si n?cessaire.
char * trames[]= {"$GPGSV,3,2,10,15,03,077,,18,04,041,42,19,85,271,,20,08,214,*7C",
"$GPGSV,3,3,10,22,39,053,50,28,15,320,*7E",
"$GPRMC,141914.00,A,4545.6424,N,00306.6036,E,0.4,99.4,010206,,*0C",
"$GPGLL,4545.6424,N,00306.6036,E,141914.00,A*0E",
"$GPGGA,141914.00,4545.0000,N,00306.6036,E,1,05,3.4,499.3,M,,M,,*7D",
"$GPGGA,141925.00,4545.2410,N,00306.6046,E,1,05,3.4,501.4,M,,M,,*7D"
"$GPGSA,A,3,,03,,22,14,,01,,18,,,,3.9,3.4,1.9*39",
"$GPVTG,99.4,T,,M,0.4,N,0.7,K*57",
"$GPZDA,141914.00,01,02,2006,00,00*69",
0};
zone zones[] = // declaration d'un tableau de zones
{
{{44.78887762, -3.012}, 50},
{{44.7891220, -3.013}, 70},
{{46.7501,3.1101},50}
};
position test_position;
position pos1;
position pos2;
int trame_cmp(char * trame, char * type) // declaration de la fonction de comparaison de deux chaines
{
/* if (!strncmp(trame+1,type,strlen(type)))
return 1;
return 0;
*/
int i;
for (i=0; i<strlen(type); i++) // parcours de la longueur du type
{
if (trame[i+1] != type[i]) // inegalit? entre les caracteres
return 0; // renvoie 0
}
return 1; // renvoie 1
}
int decode_int(char c) // declaration de la fonction qui renvoie le nombre associ? au caractere
{
c=c-'0';
return c;
}
int decode_nombre(char * ch, int n) // fonction qui recupere les n premiers chiffres d'une chaine
{
int i;
int somme=0;
for (i=0;i<n;i++)
{
somme=(somme*10) + decode_int(ch[i]);
}
return somme;
}
float conversion_longitude(char * lon) // fonction qui convertie une longitude en nombre flottant
{
float result_convers,val_deci;
int val_ent_dec,val_ent_minut;
result_convers=decode_nombre(lon,3);// recuperation de la partie entiere
val_ent_minut=decode_nombre(&lon[3],2);
val_ent_dec=decode_nombre(&lon[6],4);
val_deci=(val_ent_minut+(0.0001*val_ent_dec))/60; // recuperation de la valeur decimale en degr?
result_convers=result_convers+val_deci;
return result_convers;
}
float conversion_latitude(char * lat) // fonction qui convertie une longitude en nombre flottant
{
// 3723.2475 equivalent a 37 degr? 23.2475 / 60 degr?
float result_convers,val_deci;
int val_ent_dec,val_ent_minut;
char minute[7];
char min[4];
int i;
for (i=0;i<7; i++) minute[i]=lat[2+i];
for (i=0;i<4; i++) min[i]=lat[5+i];
result_convers=decode_nombre(lat,2);// recuperation de la partie entiere 37
val_ent_minut=decode_nombre(minute,2); // 23
val_ent_dec=decode_nombre(min,4); // 2475
val_deci=(val_ent_minut+(val_ent_dec*0.0001))*0.0166667; // recuperation de la valeur decimale en degr?
result_convers+=val_deci;
return result_convers;
}
int decode_trame(char* trame,position * pos) // fonction qui rends les trames "GPGGA" et qui renvoie 1 et affichage de la latitude et la longitude en floattant
{
int i;
char ch[10];
if (trame_cmp(trame,"GPGGA"))
{
for (i=0;i<10;i++) ch[i]=trame[29+i];
pos->latitude=conversion_latitude(trame+17);
pos->longitude=conversion_longitude(ch);
return 1;
}
return 0;
}
float conver_radian(float x) // fonction qui convertit un nombre flottant en flottaant
{
return (x*M_PI)/180;
}
float calcul_distance(position pos1,position pos2) // fonction qui calcule la distance entre deux positions
{
float result= (40000/360) * sqrt(((pos2.latitude - pos1.latitude)*(pos2.latitude - pos1.latitude))+((pos2.longitude - pos1.longitude)*(pos2.longitude - pos1.longitude))) ;
return result;
}
float calcul_vitesse(position pos1,position pos2) // fonction qui calcule la distance entre deux positions
{
float vitesse;
vitesse=3600*(calcul_distance(pos1,pos2)*Rayon);
return vitesse;
}
int distance_a_la_plus_proche_zone(position p,zone r[],int nb_zones,float *d) // fonction qui calcule la distance la plus proche
{
int index=0;
int i;
*d=fabs(calcul_distance(p,r[0].rpos)); // initialisation du minimum
float t;
if (nb_zones>0)
{
for (i=1;i<nb_zones;i++)
{
t=fabs(calcul_distance(p,r[i].rpos));
if (t<*d)
{
*d=t;
index=i;
}
}
return index;
}
return -1;
}
void test_distance_plus_proche(void) //
{
position p;
p.latitude =45.75;
p.longitude=3.110060;
int num_zone;
float d ;
num_zone=distance_a_la_plus_proche_zone(p,zones,sizeof(zones),&d);
if (num_zone!=2 & fabs(d-44.85)>0.5)
{
printf(("erreur test distance la plus proche "));
exit(-1);
}
}
float fonction_generique(char* ch) // fonction qui convertit la latitudes ou la longitude en flottant
{
float result_convers;
if(ch[4]=='.')
{
result_convers=conversion_latitude(ch);
}
else if(ch[5]=='.')
{
result_convers=conversion_longitude(ch);
}
return result_convers;
}
//Fonction ? modifier !!!!!
void traitement(char * trame)
{
/*
static int cpt=0;
cpt++;
if (trame_cmp(trame,"GPGGA"))
{printf ("> %s\n",trame);}
*/
position p;
position p_init;
p_init.latitude=45.750000;
p_init.longitude= 3.110060;
float distance;
float vitesse;
float seuil=1000;
int index;
if (decode_trame(trame,&p))
{
printf ("> %s\n",trame);
printf("la latitude est %f \n la longitude est %f \n ",p.latitude,p.longitude);
vitesse=calcul_vitesse(p_init,p);
index=distance_a_la_plus_proche_zone(p,zones,sizeof(zones),&distance);
if ((distance<seuil) && (vitesse>zones[index].vitmax))
{
printf(" alarme on \n");
printf(" zone numero %d \n ",index);
printf("la vitesse est %f\n ",vitesse);
printf("la distance est %f \n ",distance);
}
else
printf("Alarme off \n ");
p_init = p;
}
}
void test_decode_trame(void)
{
if (decode_trame("$GPGGA,141914.00,4545.0000,N,00306.6036,E,1,05,3.4,499.3,M,,M,,*7D",&test_position)!=1)
{
printf("Erreur Test decode trame \n");
exit(-1);
}
}
void test_decode_int(void)
{
if (decode_int('0')!=0)
{
printf("Erreur test unitaire decode int\n");
exit(-1);
}
if (decode_int('1')!=1)
{
printf("Erreur test unitaire decode int\n");
exit(-1);
}
if (decode_int('2')!=2)
{
printf("Erreur test unitaire decode int\n");
exit(-1);
}
if (decode_int('3')!=3)
{
printf("Erreur test unitaire decode int\n");
exit(-1);
}
if (decode_int('4')!=4)
{
printf("Erreur test unitaire decode int\n");
exit(-1);
}
if (decode_int('5')!=5)
{
printf("Erreur test unitaire decode int\n");
exit(-1);
}
}
void test_decode_nombre(void)
{
if (decode_nombre("7541",1)!=7)
{
printf("Erreur test unitaire decode nombre\n");
......
}
}
void test_fonction_generique(void)
{
if (fonction_generique("3223.2475") - 37.387459 > 0.0001 )
{
printf("Erreur test latitude !!! \n");
exit(-1);
}
if (fonction_generique("00306.6036")-3.110060 > 0.0001)
{
printf("Erreur test longitude !!! \n");
exit(-1);
}
}
void test_latitude(void)
{
if (conversion_latitude("3223.2475,N") - 37.387459 > 0.0001 )
{
printf("Erreur test latitude !!! \n");
exit(-1);
}
}
void test_longitude(void)
{
if (conversion_longitude("00306.6036,E")-3.110060 > 0.0001)
{
printf("Erreur test longitude !!! \n");
exit(-1);
}
}
//Ajouter vos tests unitaires dans cette fonction.
void tests_unitaires(void)
{
if (5!=5){
printf ("Erreur Test unitaire basique.\n");
exit(-1);
}
if (trame_cmp("$GPGGA suite chaine","GPGGA")!=1){
printf ("Erreur Test unitaire trame_cmp.\n");
exit(-1);
}
if (trame_cmp("$GPRMC suite chaine","GPGGA")!=0){
printf ("Erreur Test unitaire trame_cmp.\n");
exit(-1);
}
if (trame_cmp("$GPRMC... ", "GPRMC" )!=1){
printf ("Erreur Test unitaire trame_cmp.\n");
exit(-1);
}
if (trame_cmp("$APRMC...", "GPGGA")!=0){
printf ("Erreur Test unitaire trame_cmp.\n");
exit(-1);
}
}
// Ne pas modifier cette fonction
int main(int argc,char ** argv)
{
int trame_valide;
tests_unitaires();
test_decode_int();
test_decode_nombre();
test_latitude();
test_longitude();
test_fonction_generique();
test_decode_trame();
test_distance_plus_proche();
// Affichage des trames definies dans la table trames.
printf ("Trames de tests tableau trames:\n");
int i=0;
while (trames[i])
traitement(trames[i++]);
if (!trame_init())
exit(-1);
// Affichage des trames du fichier gps.log
char *trame;
printf ("Trames de tests du fichier gps.log\n");
while ((trame = trame_suivante()))
traitement(trame);
return 0;
}
double Q[4][4] = {{0, 0, 0, 0},
/ Pour compiler : gcc sp4a3_kalman.c -lm
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "sp4a3_kalman_extra.h"
void Add_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double out[na][ma]){
int I,J=0;
for (I=0; I<na; I++){
for (J=0; J<ma; J++){#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include "trame.h"
#include <math.h>
typedef struct // declaration du type position compos? de la latitude et la longitude
{
float latitude;
float longitude;
} position;
typedef struct // declaration du type zone compos? de la position et la vitesse maximale
{
position rpos;
float vitmax;
} zone;
#define Rayon 6378.1370
//Trames de tests ? modifier si n?cessaire.
char * trames[]= {"$GPGSV,3,2,10,15,03,077,,18,04,041,42,19,85,271,,20,08,214,*7C",
"$GPGSV,3,3,10,22,39,053,50,28,15,320,*7E",
"$GPRMC,141914.00,A,4545.6424,N,00306.6036,E,0.4,99.4,010206,,*0C",
"$GPGLL,4545.6424,N,00306.6036,E,141914.00,A*0E",
"$GPGGA,141914.00,4545.0000,N,00306.6036,E,1,05,3.4,499.3,M,,M,,*7D",
"$GPGGA,141925.00,4545.2410,N,00306.6046,E,1,05,3.4,501.4,M,,M,,*7D"
"$GPGSA,A,3,,03,,22,14,,01,,18,,,,3.9,3.4,1.9*39",
"$GPVTG,99.4,T,,M,0.4,N,0.7,K*57",
"$GPZDA,141914.00,01,02,2006,00,00*69",
0};
zone zones[] = // declaration d'un tableau de zones
{
{{44.78887762, -3.012}, 50},
{{44.7891220, -3.013}, 70},
{{46.7501,3.1101},50}
};
position test_position;
position pos1;
position pos2;
int trame_cmp(char * trame, char * type) // declaration de la fonction de comparaison de deux chaines
{
/* if (!strncmp(trame+1,type,strlen(type)))
return 1;
return 0;
*/
int i;
for (i=0; i<strlen(type); i++) // parcours de la longueur du type
{
if (trame[i+1] != type[i]) // inegalit? entre les caracteres
return 0; // renvoie 0
}
return 1; // renvoie 1
}
int decode_int(char c) // declaration de la fonction qui renvoie le nombre associ? au caractere
{
c=c-'0';
return c;
}
int decode_nombre(char * ch, int n) // fonction qui recupere les n premiers chiffres d'une chaine
{
int i;
int somme=0;
for (i=0;i<n;i++)
{
somme=(somme*10) + decode_int(ch[i]);
}
return somme;
}
float conversion_longitude(char * lon) // fonction qui convertie une longitude en nombre flottant
{
float result_convers,val_deci;
int val_ent_dec,val_ent_minut;
result_convers=decode_nombre(lon,3);// recuperation de la partie entiere
val_ent_minut=decode_nombre(&lon[3],2);
val_ent_dec=decode_nombre(&lon[6],4);
val_deci=(val_ent_minut+(0.0001*val_ent_dec))/60; // recuperation de la valeur decimale en degr?
result_convers=result_convers+val_deci;
return result_convers;
}
float conversion_latitude(char * lat) // fonction qui convertie une longitude en nombre flottant
{
// 3723.2475 equivalent a 37 degr? 23.2475 / 60 degr?
float result_convers,val_deci;
int val_ent_dec,val_ent_minut;
char minute[7];
char min[4];
int i;
for (i=0;i<7; i++) minute[i]=lat[2+i];
for (i=0;i<4; i++) min[i]=lat[5+i];
result_convers=decode_nombre(lat,2);// recuperation de la partie entiere 37
val_ent_minut=decode_nombre(minute,2); // 23
val_ent_dec=decode_nombre(min,4); // 2475
val_deci=(val_ent_minut+(val_ent_dec*0.0001))*0.0166667; // recuperation de la valeur decimale en degr?
result_convers+=val_deci;
return result_convers;
}
int decode_trame(char* trame,position * pos) // fonction qui rends les trames "GPGGA" et qui renvoie 1 et affichage de la latitude et la longitude en floattant
{
int i;
char ch[10];
if (trame_cmp(trame,"GPGGA"))
{
for (i=0;i<10;i++) ch[i]=trame[29+i];
pos->latitude=conversion_latitude(trame+17);
pos->longitude=conversion_longitude(ch);
return 1;
}
return 0;
}
float conver_radian(float x) // fonction qui convertit un nombre flottant en flottaant
{
return (x*M_PI)/180;
}
float calcul_distance(position pos1,position pos2) // fonction qui calcule la distance entre deux positions
{
float result= (40000/360) * sqrt(((pos2.latitude - pos1.latitude)*(pos2.latitude - pos1.latitude))+((pos2.longitude - pos1.longitude)*(pos2.longitude - pos1.longitude))) ;
return result;
}
float calcul_vitesse(position pos1,position pos2) // fonction qui calcule la distance entre deux positions
{
float vitesse;
vitesse=3600*(calcul_distance(pos1,pos2)*Rayon);
return vitesse;
}
int distance_a_la_plus_proche_zone(position p,zone r[],int nb_zones,float *d) // fonction qui calcule la distance la plus proche
{
int index=0;
int i;
*d=fabs(calcul_distance(p,r[0].rpos)); // initialisation du minimum
float t;
if (nb_zones>0)
{
for (i=1;i<nb_zones;i++)
{
t=fabs(calcul_distance(p,r[i].rpos));
if (t<*d)
{
*d=t;
index=i;
}
}
return index;
}
return -1;
}
void test_distance_plus_proche(void) //
{
position p;
p.latitude =45.75;
p.longitude=3.110060;
int num_zone;
float d ;
num_zone=distance_a_la_plus_proche_zone(p,zones,sizeof(zones),&d);
if (num_zone!=2 & fabs(d-44.85)>0.5)
{
printf(("erreur test distance la plus proche "));
exit(-1);
}
}
float fonction_generique(char* ch) // fonction qui convertit la latitudes ou la longitude en flottant
{
float result_convers;
if(ch[4]=='.')
{
result_convers=conversion_latitude(ch);
}
else if(ch[5]=='.')
{
result_convers=conversion_longitude(ch);
}
return result_convers;
}
//Fonction ? modifier !!!!!
void traitement(char * trame)
{
/*
static int cpt=0;
cpt++;
if (trame_cmp(trame,"GPGGA"))
{printf ("> %s\n",trame);}
*/
position p;
position p_init;
p_init.latitude=45.750000;
p_init.longitude= 3.110060;
float distance;
float vitesse;
float seuil=1000;
int index;
if (decode_trame(trame,&p))
{
printf ("> %s\n",trame);
printf("la latitude est %f \n la longitude est %f \n ",p.latitude,p.longitude);
vitesse=calcul_vitesse(p_init,p);
index=distance_a_la_plus_proche_zone(p,zones,sizeof(zones),&distance);
if ((distance<seuil) && (vitesse>zones[index].vitmax))
{
printf(" alarme on \n");
printf(" zone numero %d \n ",index);
printf("la vitesse est %f\n ",vitesse);
printf("la distance est %f \n ",distance);
}
else
printf("Alarme off \n ");
p_init = p;
}
}
void test_decode_trame(void)
{
if (decode_trame("$GPGGA,141914.00,4545.0000,N,00306.6036,E,1,05,3.4,499.3,M,,M,,*7D",&test_position)!=1)
{
printf("Erreur Test decode trame \n");
exit(-1);
}
}
void test_decode_int(void)
{
if (decode_int('0')!=0)
{
printf("Erreur test unitaire decode int\n");
exit(-1);
}
if (decode_int('1')!=1)
{
printf("Erreur test unitaire decode int\n");
exit(-1);
}
if (decode_int('2')!=2)
{
printf("Erreur test unitaire decode int\n");
exit(-1);
}
... Ce différentiel a été tronqué car il excède la taille maximale pouvant être affichée.

Formats disponibles : Unified diff