|
// Pour compiler : gcc sp4a3_kalman.c -lm
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
|
|
#include "sp4a3_kalman_extra.h"
|
|
|
|
|
|
void Add_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double out[na][ma]){
|
|
if (na ==nb && ma ==mb)
|
|
{
|
|
int i,j;
|
|
for (i=0;i<=na-1;i++)
|
|
{
|
|
for (j=0;j<=ma-1;j++)
|
|
{
|
|
out[i][j] = A[i][j] + B[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void Inverse_Mat_22(int n,int m,double A[n][m],double B[n][m]){
|
|
if (n==2 && m ==2)
|
|
{
|
|
double det = A[0][0]*A[1][1]- A[0][1]*A[1][0];
|
|
if (det !=0)
|
|
{
|
|
B[0][0] = (double) A[1][1]/det;
|
|
B[1][1] = (double) A[0][0]/det;
|
|
B[0][1] = (double) -A[0][1]/det;
|
|
B[1][0] = (double) -A[1][0]/det;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void Transpose_Mat(int n,int m,double A[n][m],double R[m][n]){
|
|
int i,j;
|
|
for (i=0;i<n;i++)
|
|
{
|
|
for (j=0;j<m;j++)
|
|
{
|
|
R[j][i]=A[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
void Sub_Mat_Mat(int na,int ma,double A[na][ma],int nb,int mb,double B[nb][mb], double out[na][ma]){
|
|
if (na ==nb && ma ==mb)
|
|
{
|
|
int i,j;
|
|
for (i=0;i<=na-1;i++)
|
|
{
|
|
for (j=0;j<=ma-1;j++)
|
|
{
|
|
out[i][j] = A[i][j] - B[i][j];
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
void Mul_Mat_Mat(int na,int ma,double A[na][ma], int nb,int mb,double B[nb][mb], double out[na][mb]){
|
|
if (ma == nb)
|
|
{
|
|
for (int i=0;i<na;i++)
|
|
{
|
|
for (int j=0;j<mb;j++)
|
|
{
|
|
out[i][j] = 0;
|
|
for (int k=0; k<ma;k++)
|
|
{
|
|
out[i][j] += A[i][k]*B[k][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void tests_unitaires(void){
|
|
//Matrices d'entrée
|
|
double T21a[2][1]={{7},{-5}};
|
|
double T21b[2][1]={{-3},{46}};
|
|
double T22a[2][2]={{12,78},{-5,13}};
|
|
double T22b[2][2]={{-25,36},{7,42}};
|
|
double T24[2][4]={{7,-71,-12,3},{41,123,-5,10}};
|
|
double T41a[4][1]={{45},{-123},{-78},{-410}};
|
|
double T41b[4][1]={{-10},{45},{27},{-9}};
|
|
double T42a[4][2]={{-73,45},{10,12},{-41,-35},{8,-23}};
|
|
double T44a[4][4]={{1,2,7,4},{6,5,7,8},{9,8,7,6},{5,4,3,2}};
|
|
double T44b[4][4]={{12,13,14,15},{21,22,23,40},{78,45,12,3},{54,10,12,47}};
|
|
|
|
//Matrices résultat
|
|
double R21[2][1],R22[2][2],R24[2][4],R41[4][1],R42[4][2],R44[4][4];
|
|
|
|
//Matrices de validation
|
|
double RST21[2][1]={{10},{-51}};
|
|
double RInvT22[2][2]={{0.02380952380952381,-0.1428571428571428},{0.009157509157509158,0.02197802197802198}};
|
|
double RAT22[2][2]={{-13,114},{2,55}};
|
|
double RTT24[4][2]={{7,41},{-71,123},{-12,-5},{3,10}};
|
|
double RMT24T41[2][1]={{8754},{-16994}};
|
|
double RMT24T42[2][2]={{-705,-186},{-1478,3266}};
|
|
double RMT24T44[2][4]={{-512,-425,-523,-606},{784,697,1143,1138}};
|
|
double RAT41[4][1]={{35},{-78},{-51},{-419}};
|
|
double RMT42T21[4][1]={{-736},{10},{-112},{171}};
|
|
double RMT42T22[4][2]={{-1101,-5109},{60,936},{-317,-3653},{211,325}};
|
|
double RMT42T24[4][4]={{1334,10718,651,231},{562,766,-180,150},{-1722,-1394,667,-473},{-887,-3397,19,-206}};
|
|
double RTT44[4][4]={{1,6,9,5},{2,5,8,4},{7,7,7,3},{4,8,6,2}};
|
|
double RMT44T41[4][1]={{-2387},{-4171},{-3585},{-1321}};
|
|
double RMT44T42[4][2]={{-308,-268},{-611,-99},{-816,118},{-432,122}};
|
|
double RAT44[4][4]={{13,15,21,19},{27,27,30,48},{87,53,19,9},{59,14,15,49}};
|
|
double RST44[4][4]={{-11,-11,-7,-11},{-15,-17,-16,-32},{-69,-37,-5,3},{-49,-6,-9,-45}};
|
|
double RMT44T44[4][4]={{816,412,192,304},{1155,583,379,687},{1146,668,466,758},{486,308,222,338}};
|
|
|
|
|
|
|
|
printf("Execution des tests unitaires.\n");
|
|
Transpose_Mat(2,4,T24,R42); if (!Equal_Mat_Mat(RTT24,R42)) error("Erreur calcul Transposition 2x4");
|
|
Transpose_Mat(4,4,T44a,R44); if (!Equal_Mat_Mat(RTT44,R44)) error("Erreur calcul Transposition 4x4");
|
|
Inverse_Mat_22(2,2,T22a,R22); if (!Equal_Mat_Mat(RInvT22,R22)) error("Erreur calcul Inversion 2x2");
|
|
|
|
|
|
Add_Mat_Mat(2,2,T22a,2,2,T22b,R22); if (!Equal_Mat_Mat(RAT22,R22)) error("Erreur calcul Addition 2x2");
|
|
Add_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RAT44,R44)) error("Erreur calcul Addition 4x4");
|
|
Add_Mat_Mat(4,1,T41a,4,1,T41b,R41); if (!Equal_Mat_Mat(RAT41,R41)) error("Erreur calcul Addition 4x1");
|
|
Sub_Mat_Mat(2,1,T21a,2,1,T21b,R21); if (!Equal_Mat_Mat(RST21,R21)) error("Erreur calcul Soustraction 2x1");
|
|
Sub_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RST44,R44)) error("Erreur calcul Soustraction 4x4");
|
|
Mul_Mat_Mat(4,4,T44a,4,4,T44b,R44); if (!Equal_Mat_Mat(RMT44T44,R44)) error("Erreur calcul Multiplication 4x4 4x4");
|
|
Mul_Mat_Mat(4,4,T44a,4,1,T41a,R41); if (!Equal_Mat_Mat(RMT44T41,R41)) error("Erreur calcul Multiplication 4x4 4x1");
|
|
Mul_Mat_Mat(4,4,T44a,4,2,T42a,R42); if (!Equal_Mat_Mat(RMT44T42,R42)) error("Erreur calcul Multiplication 4x4 4x2");
|
|
Mul_Mat_Mat(4,2,T42a,2,1,T21a,R41); if (!Equal_Mat_Mat(RMT42T21,R41)) error("Erreur calcul Multiplication 4x2 2x1");
|
|
Mul_Mat_Mat(4,2,T42a,2,2,T22a,R42); if (!Equal_Mat_Mat(RMT42T22,R42)) error("Erreur calcul Multiplication 4x2 2x2");
|
|
Mul_Mat_Mat(4,2,T42a,2,4,T24,R44); if (!Equal_Mat_Mat(RMT42T24,R44)) error("Erreur calcul Multiplication 4x2 2x4");
|
|
Mul_Mat_Mat(2,4,T24,4,1,T41a,R21); if (!Equal_Mat_Mat(RMT24T41,R21)) error("Erreur calcul Multiplication 2x4 4x1");
|
|
Mul_Mat_Mat(2,4,T24,4,2,T42a,R22); if (!Equal_Mat_Mat(RMT24T42,R22)) error("Erreur calcul Multiplication 2x4 4x2");
|
|
Mul_Mat_Mat(2,4,T24,4,4,T44a,R24); if (!Equal_Mat_Mat(RMT24T44,R24)) error("Erreur calcul Multiplication 2x4 4x4");
|
|
printf("Test unitaires OK.\n");
|
|
|
|
}
|
|
|
|
int main(int argc,char **argv){
|
|
|
|
|
|
|
|
tests_unitaires();
|
|
|
|
FILE* fichier = fopen("pos_t_x_y.dat","r");
|
|
if (fichier == NULL)
|
|
error("Impossible d'ouvrir le fichier GPGGA_data.dat");
|
|
|
|
FILE * Fout = Fout = fopen("output.dat","w");
|
|
if (fichier == NULL)
|
|
error("Impossible d'ouvrir le fichier output.dat");
|
|
|
|
printf("Kalman\n");
|
|
double t = 0;
|
|
double t0,x0,y0;
|
|
double x,y;
|
|
double oldx,oldy;
|
|
double dx=0,dy=0,dt=0.1;
|
|
int cpt = 0;
|
|
|
|
|
|
|
|
// kalman param
|
|
double sigma_etat = 10.0;
|
|
double sigma_observation = 2.0;
|
|
double X[4][1] = {{0},{0},{0},{0}};
|
|
|
|
double P[4][4] = {{sigma_etat*sigma_etat, 0, 0, 0},
|
|
{0, sigma_etat*sigma_etat, 0, 0},
|
|
{0, 0, 0, 0},
|
|
{0, 0, 0, 0}};
|
|
|
|
double Q[4][4] = {{0, 0, 0, 0},
|
|
{0, 0, 0, 0},
|
|
{0, 0, 0.1, 0},
|
|
{0, 0, 0, 0.1}};
|
|
|
|
double R[2][2] = {{sigma_observation*sigma_observation, 0},
|
|
{0 , sigma_observation*sigma_observation}};
|
|
|
|
double K[4][2];
|
|
double H[2][4] = {{1, 0, 0, 0},
|
|
{0, 1, 0, 0}};
|
|
double HT[4][2];
|
|
Transpose_Mat(2,4,H,HT);
|
|
|
|
double F[4][4] = {{1, 0, dt, 0},
|
|
{0, 1, 0, dt},
|
|
{0, 0, 1, 0},
|
|
{0, 0, 0, 1}};
|
|
double FT[4][4];
|
|
Transpose_Mat(4,4,F,FT);
|
|
|
|
double tampon_44[4][4] = {{0,0,0,0},
|
|
{0,0,0,0},
|
|
{0,0,0,0},
|
|
{0,0,0,0}};
|
|
|
|
double tampon_44bis[4][4] = {{0,0,0,0},
|
|
{0,0,0,0},
|
|
{0,0,0,0},
|
|
{0,0,0,0}};
|
|
|
|
double tampon_24[2][4]= {{0,0,0,0},
|
|
{0,0,0,0}};
|
|
|
|
double tampon_22[2][2] = {{0,0},{0,0}};
|
|
double tampon_22bis[2][2] = {{0,0},{0,0}};;
|
|
double tampon_22ter[2][2] = {{0,0},{0,0}};
|
|
double tampon_42[4][2]= {{0,0},
|
|
{0,0},
|
|
{0,0},
|
|
{0,0}};
|
|
double tampon_41[4][1] = {{0},
|
|
{0},
|
|
{0},
|
|
{0}};
|
|
|
|
double tampon_21[2][1] = {{0}, {0}};
|
|
double DELTA[2][1] = {{0}, {0}};
|
|
|
|
double Xcopie[4][1] = {{0},
|
|
{0},
|
|
{0},
|
|
{0}};
|
|
|
|
double Pcopie[4][4] = {{0,0,0,0},
|
|
{0,0,0,0},
|
|
{0,0,0,0},
|
|
{0,0,0,0}};
|
|
|
|
double Obs[2][1]={{0},{0}};
|
|
|
|
while(fscanf(fichier, "%lf %lf %lf", &t, &x, &y)>0){
|
|
|
|
|
|
printf("-------------%04d--------------\n",cpt);
|
|
|
|
|
|
|
|
if (cpt ==0)
|
|
{
|
|
t0=t;x0=x;y0=y;
|
|
x=x-x0;y=y-y0;
|
|
Plot_Mat(F,"F = ");
|
|
Plot_Mat(H,"H = ");
|
|
Plot_Mat(R,"R = ");
|
|
}
|
|
else
|
|
{
|
|
t -= t0;x -= x0;y -= y0;
|
|
|
|
Obs[1][0] = y;
|
|
Obs[0][0]= x;
|
|
|
|
Xcopie[0][0] = X[0][0];
|
|
Xcopie[1][0] = X[1][0];
|
|
Xcopie[2][0] = X[2][0];
|
|
Xcopie[3][0] = X[3][0];
|
|
|
|
|
|
|
|
debug=0; ///Mettre à 1 pour afficher les matrices.
|
|
///Ajouter votre code ci-dessous///
|
|
// Kalman
|
|
|
|
// X = F*X
|
|
Mul_Mat_Mat(4,4,F, 4,1, X, Xcopie);
|
|
//Plot_Mat(X," X(k+1|k) = ");
|
|
|
|
//P = F*P*F'+Q;
|
|
Mul_Mat_Mat(4,4,F,4,4,P,tampon_44);
|
|
Mul_Mat_Mat(4,4,tampon_44,4,4, FT, tampon_44bis);
|
|
Add_Mat_Mat(4,4,tampon_44bis,4,4,Q, P);
|
|
//Plot_Mat(P,"P(k+1|k) = F.P(k|k).FT + Q = ");
|
|
|
|
// K = P*H' / ( H*P*H' + R);
|
|
|
|
|
|
|
|
Mul_Mat_Mat(4,4,P,4,2, HT, tampon_42);
|
|
Mul_Mat_Mat(2,4,H,4,4,P, tampon_24);
|
|
Mul_Mat_Mat(2,4,tampon_24, 4,2,HT, tampon_22);
|
|
Add_Mat_Mat(2,2,tampon_22,2,2,R, tampon_22bis);
|
|
Inverse_Mat_22(2,2,tampon_22bis, tampon_22ter);
|
|
Mul_Mat_Mat(4,2,tampon_42, 2,2, tampon_22ter, K);
|
|
|
|
//Plot_Mat(K,"K = ");
|
|
|
|
|
|
//X = X + K*([xb(i);yb(i)]-H*X);
|
|
|
|
Mul_Mat_Mat(2,4, H, 4,1, X, tampon_21);
|
|
Sub_Mat_Mat(2,1, Obs,2,1, tampon_21, DELTA);
|
|
Mul_Mat_Mat(4,2,K,2,1, DELTA,tampon_41);
|
|
Add_Mat_Mat(4,1, Xcopie, 4,1, tampon_41, X );
|
|
|
|
|
|
//Plot_Mat(DELTA,"DELTA = Obs - H.X(k+1|k)");
|
|
|
|
//Plot_Mat(Xcopie," X(k+1|k+1) = X(k+1|k) + K.Delta = ");
|
|
|
|
// P = P - K*H*P;
|
|
|
|
for (int i=0; i<4;i++)
|
|
{
|
|
for(int j=0; j<4; j++)
|
|
{
|
|
Pcopie[i][j] = P[i][j];
|
|
}
|
|
}
|
|
|
|
Mul_Mat_Mat(4,2, K, 2,4,H, tampon_44);
|
|
Mul_Mat_Mat(4,4,tampon_44, 4,4, P, tampon_44bis);
|
|
Sub_Mat_Mat(4,4,Pcopie, 4,4, tampon_44bis, P);
|
|
// Plot_Mat(Pcopie," P(k+1|k+1) = P(k+1|k) - K.H.P(k+1|k) = ");
|
|
|
|
|
|
|
|
// La matrice X doit contenir la position filtrée //
|
|
|
|
}
|
|
t = cpt * dt;
|
|
dx = (x - oldx)/dt;
|
|
dy = (y - oldy)/dt;
|
|
fprintf(Fout,"%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n",t,x,y,sqrt(dx*dx+dy*dy)*dt,X[0][0],X[1][0],X[2][0],X[3][0],sqrt(X[2][0]*X[2][0]+X[3][0]*X[3][0])*dt);
|
|
oldx = x;
|
|
oldy = y;
|
|
cpt ++;
|
|
}
|
|
fclose(Fout);
|
|
fclose(fichier);
|
|
|
|
system ("gnuplot -p -e \"plot 'output.dat' u 5:6 w l, '' u 2:3 w l\";");
|
|
system ("gnuplot -p -e \"plot 'output.dat' u 1:9 w l, '' u 1:4 w l\";");
|
|
system ("gnuplot -p -e \"plot 'vitesse_reelle.dat' u 2 w l, 'output.dat' u 9 w l\";");
|
|
return 0;
|
|
}
|